
TX System RISC
TX79 Core Architecture

(Symmetric 2-way superscalar
64-bit CPU) Rev. 2.0

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our
products. No responsibility is assumed by TOSHIBA for any infringements of patents or
other rights of the third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and reliability of its products.
Nevertheless, semiconductor devices in general can malfunction or fail due to their
inherent electrical sensitivity and vulnerability to physical stress.
It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with
the standards of safety in making a safe design for the entire system, and to avoid
situations in which a malfunction or failure of such TOSHIBA products could cause loss
of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within
specified operating ranges as set forth in the most recent TOSHIBA products
specifications.
Also, please keep in mind the precautions and conditions set forth in the “Handling
Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..

The Toshiba products listed in this document are intended for usage in general
electronics applications (computer, personal equipment, office equipment, measuring
equipment, industrial robotics, domestic appliances, etc.).
These Toshiba products are neither intended nor warranted for usage in equipment that
requires extraordinarily high quality and/or reliability or a malfunction or failure of
which may cause loss of human life or bodily injury (“Unintended Usage”).
Unintended Usage include atomic energy control instruments, airplane or spaceship
instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of
Toshiba products listed in this document shall be made at the customer’s own risk.

The products described in this document may include products subject to the foreign
exchange and foreign trade laws.

© 2001 TOSHIBA CORPORATION
All Rights Reserved

Preface

Thank you for choosing Toshiba semiconductor products. This is the year 2000 edition of the user’s

manual for the architecture of the TX79 RISC microprocessor core, a member of the TX System RISC

Family of Toshiba microprocessors.

This user’s manual is designed to be easily understood by engineers who are designing a Toshiba

microprocessor into their products for the first time. No special knowledge of this architecture is

assumed – the contents includes basic information about the architecture of the TX79 microprocessor

core as well as more advanced, in-depth description.

Toshiba are continually updating technical publications. Any comments and suggestions regarding any

Toshiba document are most welcome and will be taken into account when subsequent editions are

prepared. To receive updates to the information in this manual, or for additional information about this

architecture, please contact your nearest Toshiba office or authorized Toshiba dealer.

April 2001

Contents

i

CONTENTS

Handling Precautions
C790 User’s Manual

1. Introduction ...1-1

1.1 Features..1-2

1.2 Related Documents ..1-3

1.3 Revision History..1-4

1.4 Conventions Used in This Manual ...1-5

1.5 Restrictions for Use of the C790 CPU Core...1-6

2. Architecture Overview..2-1

2.1 Block Diagram and Functional Block Descriptions ..2-2

2.1.1 PC Unit ..2-3

2.1.2 MMU ..2-3

2.1.3 Caches...2-3

2.1.4 Issue Logic and Staging Registers..2-3

2.1.5 GPR (General Purpose Registers) and FPR (Floating-Point Registers)..........................2-3

2.1.6 The Five Execution Pipes..2-3
2.1.6.1 I0 and I1 Pipes ..2-3
2.1.6.2 LS - Load/Store Pipe...2-3
2.1.6.3 BR - Branch Pipe ..2-3
2.1.6.4 C1 - COP1/FPU Pipe ..2-3

2.1.7 Operand/Bypass logic ...2-4

2.1.8 Response Buffer and Writeback Buffer ...2-4

2.1.9 UCAB...2-4

2.1.10 Result and Move Buses ..2-4

2.1.11 Bus Interface Unit and BIU Bus...2-4

2.2 Superscalar Pipeline Operation ...2-5

2.2.1 Integer Instruction Pipeline Stages ...2-5

2.2.2 C1 (COP1/FPU) Instruction Pipeline Stages ..2-8

2.2.3 Classification and Routing of Instructions According to Execution Pipelines.................2-10

2.2.4 Instruction Issue Combinations ...2-12

2.3 Registers...2-14

2.3.1 CPU Registers...2-14

2.3.2 FPU Registers ...2-14

2.3.3 COP0 Registers...2-15

Contents

ii

2.4 Memory Management ..2-16

2.5 Cache Memory ...2-17

2.6 Bus Interface ..2-18

2.7 Floating Point Unit ..2-18

2.8 Performance Counter ...2-19

2.9 Debug and Tracing Functions ..2-19

3. Instruction Set Overview and Summary...3-1

3.1 Introduction...3-2

3.2 CPU Instruction Set Formats..3-3

3.3 Instruction Set Summary ..3-4

3.3.1 Load/Store Instructions ...3-4
3.3.1.1 Normal Loads and Stores ...3-4
3.3.1.2 Multimedia Loads and Stores ...3-5
3.3.1.3 Coprocessor Loads and Stores ..3-5
3.3.1.4 Data Formats and Addressing ..3-5
3.3.1.5 Defining Access Types..3-9
3.3.1.6 Scheduling a Load Delay Slot...3-13

3.3.2 Computational Instructions..3-14
3.3.2.1 ALU Immediate Instructions..3-14
3.3.2.2 Three Operand Register-Type Instructions ..3-15
3.3.2.3 Shift Instructions ...3-15
3.3.2.4 Multiply and Divide Instructions ..3-15
3.3.2.5 64-Bit Operations ..3-15

3.3.3 Jump and Branch Instructions...3-16
3.3.3.1 Jump Instructions..3-16
3.3.3.2 Branch Instructions ...3-17

3.3.4 Miscellaneous Instructions ..3-18
3.3.4.1 Exception Instructions...3-18
3.3.4.2 Serialization Instructions...3-18
3.3.4.3 MIPS IV Instructions ...3-19

3.3.5 System Control Coprocessor (COP0) Instructions ...3-20

3.3.6 Coprocessor 1 (COP1)..3-21
3.3.6.1 Coprocessor 1 (COP1) Instructions..3-21

3.3.7 C790-Specific Instructions...3-22
3.3.7.1 Integer Multiply / Divide Instructions...3-22
3.3.7.2 Multimedia Instructions ...3-23

3.4 User Instruction Latency and Repeat Rate ..3-25

4. CPU and COP0 Registers...4-1

4.1 CPU Registers..4-2

Contents

iii

4.1.1 General Purpose Registers ...4-4

4.1.2 HI and LO Registers..4-4

4.1.3 Shift Amount (SA) Register ...4-4

4.1.4 Program Counter (PC) ..4-4

4.2 System Control Coprocessor (COP0) Registers..4-5

4.2.1 Index Register (0) ..4-6

4.2.2 Random Register (1) ...4-7

4.2.3 EntryLo0 Register (2), and EntryLo1 Register (3)...4-8

4.2.4 Context Register (4) ..4-9

4.2.5 PageMask Register (5)..4-10

4.2.6 Wired Register (6) ...4-11

4.2.7 BadVAddr Register (8)...4-12

4.2.8 Count Register (9) ...4-13

4.2.9 EntryHi Register (10)...4-14

4.2.10 Compare Register (11) ..4-15

4.2.11 Status Register (12)...4-16
4.2.11.1 Status Register Format ...4-17
4.2.11.2 Status Register Modes and Access States ..4-18

4.2.12 Cause Register (13) ..4-19

4.2.13 EPC Register (14) ...4-21

4.2.14 PRId Register (15)...4-22

4.2.15 Config Register (16) ..4-23

4.2.16 BadPAddr Register (23)...4-25

4.2.17 Debug Registers (24) ..4-26

4.2.18 Performance Counter Registers (25) ..4-28

4.2.19 TagLo (28) and TagHi (29) Registers ..4-31

4.2.20 ErrorEPC (30)..4-33

5. Exception Processing and Reset ..5-1

5.1 The Exception Handling Process ...5-2

5.1.1 Level 1 Exceptions ..5-2

5.1.2 Level 2 Exceptions ..5-5

5.2 Exception Vector Locations..5-7

5.3 Cause Register Setting ..5-8

5.4 Masking an exception...5-9

5.5 Detaild Description ...5-10

5.5.1 Exception Priority...5-10

5.5.2 Reset Exception ..5-11

5.5.3 Non-Maskable Interrupt (NMI) Exception..5-12

5.5.4 Performance Counter Exception ...5-13

Contents

iv

5.5.5 Debug Exception ...5-14

5.5.6 Address Error Exception ...5-15

5.5.7 TLB Refill Exception ..5-16

5.5.8 TLB Invalid Exception..5-17

5.5.9 TLB Modified Exception ..5-18

5.5.10 Bus Error Exception...5-19

5.5.11 System Call Exception...5-20

5.5.12 BREAK Instruction Exception..5-21

5.5.13 Reserved Instruction Exception...5-22

5.5.14 Coprocessor Unusable Exception...5-23

5.5.15 Interrupt Exception ..5-24

5.5.16 SIO Exception..5-25

5.5.17 Integer Overflow Exception ...5-26

5.5.18 Trap Exception...5-27

5.5.19 Floating-Point Exception ...5-28

6. Memory Management ...6-1

6.1 Translation Look-aside Buffer (TLB) ..6-2

6.1.1 Translation Status..6-2

6.1.2 Multiple Matches..6-2

6.2 Address Spaces ...6-3

6.2.1 Virtual Address Space...6-3

6.2.2 Physical Address Space..6-4

6.2.3 Virtual-to-Physical Address Translation ..6-4

6.2.4 32-bit Address Translation Mode ..6-5

6.2.5 Operating Modes ...6-6

6.2.6 User Mode Operations ..6-8

6.2.7 Supervisor Mode Operations...6-10

6.2.8 Kernel Mode Operations ...6-11

6.3 System Control Coprocessor ...6-14

6.3.1 Format of a TLB Entry ...6-15

6.4 Virtual-to-Physical Address Translation Process ...6-18

6.5 TLB Instructions..6-20

7. Caches 7-1

7.1 Cache Features ..7-2

7.2 Organization of the Caches..7-3

7.2.1 Data Cache..7-3

7.2.2 Instruction Cache...7-4

7.2.3 Tag Structure ...7-5

Contents

v

7.2.3.1 Data Cache Tag Structure ..7-6
7.2.3.2 Instruction Cache Tag Structure ...7-6

7.2.4 State of Cache Tags After Reset...7-7

7.3 Cache Operations...7-8

7.3.1 Line Replacement Algorithm ...7-8

7.3.2 Non-blocking Loads and Hit Under Miss...7-8

7.3.3 Cache Miss and Hit Operations ..7-9

7.3.4 Data Cache Writeback Policy..7-10

7.3.5 Data Cache State Transitions ...7-11

7.3.6 Instruction Cache State Transitions ..7-12

7.3.7 Data Cache Lock Function..7-12
7.3.7.1 Operations During Lock ..7-13

7.3.8 Relationship Between Cached and Uncached Operations...7-13

7.4 Uncached Accelerated Buffer...7-14

7.4.1 UCAB Configuration ..7-14

7.4.2 Tag Structure ...7-14

7.4.3 Non-blocking Loads and HiT under Miss ..7-14

7.5 Cache Control Registers ..7-15

7.6 CACHE Instruction ...7-16

8. CPU Bus...8-1

8.1 Introduction...8-2

8.1.1 Terminology ...8-3

8.1.2 Signal Naming Convention..8-3

8.2 CPU Bus Architecture ..8-4

8.2.1 CPU Bus Connectivity for Address and Control Paths ...8-5

8.2.2 CPU Bus Connectivity for Data Paths...8-6

8.3 CPU Bus Signal Descriptions...8-7

8.3.1 Address Bus Signals ...8-7

8.4 Overview of CPU Bus Operations..8-12

8.4.1 CPU Bus Operations ...8-12

8.4.2 Processor Requests ..8-12
8.4.2.1 Read Requests ...8-12
8.4.2.2 Write Requests..8-13

8.4.3 Bus Error Operations...8-13

8.5 CPU Bus Transaction Protocols and Timing..8-14

8.5.1 Arbitration Operations ...8-14
8.5.1.1 Cycle Stealing ...8-15

8.5.2 CPU Single Operations ...8-16
8.5.2.1 CPU Single Reads ..8-16

Contents

vi

8.5.2.2 CPU Single Writes ..8-17
8.5.2.3 CPU Single Read-Write-Read-Write Cycles...8-18

8.5.3 CPU Burst Operations...8-19
8.5.3.1 CPU Burst Reads..8-19
8.5.3.2 CPU Burst Writes ..8-20
8.5.3.3 CPU Burst Read-Write Cycles..8-21
8.5.3.4 CPU Burst Write-Read Cycles..8-21

8.5.4 CPU Non-Pipeline Single Operations ...8-22
8.5.4.1 CPU Non-Pipeline Single Reads ..8-22
8.5.4.2 CPU Non-Pipeline Single Writes ..8-23

8.5.5 CPU Non-Pipeline Burst Operations ...8-23
8.5.5.1 CPU Non-Pipeline Burst Reads..8-23
8.5.5.2 CPU Non-Pipeline Burst Writes ..8-24

8.5.6 Bus Error Operations...8-25
8.5.6.1 Bus Error Exceptions ..8-25
8.5.6.2 CPU Bus Cycle Termination ...8-26
8.5.6.3 Bus Error Timing with No Pending Operation...8-26
8.5.6.4 Bus Error Timing with One Pending Operation ..8-26
8.5.6.5 Bus Error Timing with Two Pending Operations...8-28

9. Performance Counter ...9-1

9.1 Overview...9-2

9.2 Performance Counters and Performance Control Registers ...9-2

9.2.1 Accessing Counters and Registers ...9-3

9.2.2 State of Performance Counter Control Registers Upon Reset ...9-4

9.3 Counter Operation..9-5

9.3.1 Counter Events..9-6
9.3.1.1 Event Descriptions ..9-7

9.3.2 Handling Performance Counter Exceptions..9-10

9.3.3 Priority of Counter Exceptions...9-11

9.3.4 Initializing Counters ...9-11

9.3.5 The Note to Read Counters ..9-12

10. Floating-Point Unit, CP1 (Option)..10-1

10.1 Overview...10-2

10.2 Floating Point Register ...10-2

10.2.1 Floating-Point General Registers (FGRs) ...10-2

10.2.2 Floating-Point Registers (FPRs)..10-4

10.2.3 Floating-Point Control Registers ...10-4

10.2.4 Accessing the FP Control and Implementation/Revision Registers10-9

10.3 Floating-Point Formats ...10-10

Contents

vii

10.4 Binary Fixed-Point Format..10-12

10.5 Floating-Point Instruction Set Summary...10-13

10.5.1 Load, Store and Move Instructions (Table 10-10) ...10-13

10.5.2 Conversion Instructions (Table 10-11)...10-14

10.5.3 Computational Instructions (Table 10-12) ...10-14

10.5.4 Compare and Branch Instructions (Table 10-13) ..10-15

11. Floating-Point Exception (Option) ..11-1

11.1 Introduction...11-2

11.2 Exception Types ...11-2

11.3 Exception Trap Processing ..11-3

11.4 Flags ...11-3

11.5 FPU Exceptions..11-5

11.6 Saving and Restoring State..11-9

11.7 Trap Handlers for IEEE Standard 754 Exceptions...11-9

12. PC Trace...12-1

12.1 Real-Time PC Tracing ..12-2

12.1.1 Classification of Branch and Jump Instructions ..12-2

12.1.2 PC Trace Signals...12-3

12.1.3 Priority of Target Addresses ..12-7

12.1.4 Examples of PC Tracing..12-8
12.1.4.1 Sequential Execution ..12-9
12.1.4.2 Conditional Branch..12-10
12.1.4.3 Indirect Jump (Target in Phase A) ..12-11
12.1.4.4 Indirect Jump (Target in Phase B) ..12-12
12.1.4.5 Indirect Jump (During Target PC Output) ...12-13
12.1.4.6 Exception (Target in Phase B) ..12-14
12.1.4.7 Exception (During Target PC Output) ...12-15
12.1.4.8 Exception Generated by Branch or Jump Instruction...12-16
12.1.4.9 Exception Generated by Branch Delay Slot Instruction ...12-17
12.1.4.10 Exception Generated by Target Instruction ..12-18
12.1.4.11 Back to Back Exceptions (Case I) ..12-19
12.1.4.12 Back to Back Exceptions (Case II) ...12-20

13. Hardware Breakpoint..13-1

13.1 Hardware Breakpoint..13-2

13.1.1 Hardware Breakpoint signal ..13-2

13.2 Breakpoint Registers ..13-3

13.2.1 Breakpoint Control Register (BPC) ...13-4

13.2.2 Instruction Address Breakpoint Register (IAB) / Instruction Address Breakpoint Mask

Contents

viii

Register (IABM) ...13-7

13.2.3 Data Address Breakpoint Register (DAB) / Data Address Breakpoint Mask Register
(DABM)..13-7

13.2.4 Data Value Breakpoint Register (DVB) / Data Value Breakpoint Mask Register (DVBM)13-
8

13.3 Setting Breakpoint ..13-8

13.3.1 Sequence of Setting Breakpoint..13-9

13.3.2 Instruction Breakpointing...13-14

13.3.3 Data Address Breakpointing..13-16

13.3.4 Breakpointing by Data Address and Value..13-18

13.3.5 Data Value Breakpointing..13-19

13.4 Triggering External Probes...13-20

13.5 Important notice on using hardware breakpoint...13-20

A. CPU Instruction Set Details .. A-1

A.1 Description of an Instruction.. A-2

A.1.1 Instruction Mnemonic and Name ... A-2

A.1.2 Instruction Encoding Picture... A-2

A.1.3 Format .. A-2

A.1.4 Purpose .. A-2

A.1.5 Description.. A-2

A.1.6 Restrictions... A-2

A.1.7 Operation.. A-2

A.1.8 Exceptions .. A-2

A.1.9 Programming Notes, Implementation Notes .. A-3

A.2 Instruction Description Notation and Functions .. A-3
A.2.1.1 Pseudocode Language Statement Execution ... A-3
A.2.1.2 Pseudocode Symbols .. A-3

A.2.2 Definitions of Pseudocode Functions Used in Instruction Descriptions A-4
A.2.2.1 Coprocessor General Register Access Pseudocode Functions A-4
A.2.2.2 Load and Store Memory Pseudocode Functions .. A-6
A.2.2.3 Miscellaneous Functions.. A-8

A.3 CPU Instruction Formats ... A-9

A.4 Instruction Descriptions ... A-10

A.5 CPU Instruction Encoding ... A-141

B. C790-Specific Instruction Set Details .. B-1

B.1 Conventions Used in This Chapter ... B-2

B.1.1 Instruction Description Notation and Functions ... B-2

B.1.2 Pseudocode Language Statement Execution.. B-2

B.1.3 Pseudocode Symbols... B-2

Contents

ix

B.2 Definitions for Pseudocode Functions Used in Operation Descriptions B-2

B.3 Summary of C790-Specific Instructions.. B-3

B.3.1 Multiply and Multiply-Add Instructions.. B-3

B.3.2 Multimedia Instructions... B-3

B.4 Instruction Set Details ... B-6

B.5 C790-Specific Instruction Encoding .. B-163

C. COP0 System Control Coprocessor Instruction Set Details... C-1

C.1.1 Notes on the CACHE Instruction Sub-operations.. C-7
Cache Virtual Address.. C-7
Cache Physical Address .. C-7
BTAC Virtual Address... C-7
BTAC Index Bits ... C-7
COP0 Not Usable ... C-7
TLB Exceptions on Cache Operations... C-8
Hit Sub-operation Accesses... C-8
Breakpoint Exception ... C-8
Address Error Exception .. C-8

C.1.2 Sub-Operation Descriptions ... C-9

C.1.3 Updates of Data Tag Status Bits .. C-13

C.2 COP0 Instruction Encoding...C-41

D. COP1 (FPU) Instruction Set Details ... D-1

D.1 Conventions Used in This Chapter ... D-2

D.1.1 Instruction Description Notation and Functions ... D-2

D.1.2 Pseudocode Language Statement Execution.. D-2

D.1.3 Pseudocode Symbols... D-2

D.2 Definitions for Pseudocode Functions Used in Operation Descriptions D-2

D.3 Instruction Descriptions ... D-3

D.4 COP1 Instruction Encoding...D-40

Figures

x

FIGURES

Figure 2-1. C790 Block Diagram ...2-2

Figure 2-2. C790 Integer Instruction Pipeline..2-5

Figure 2-3. FPU Pipeline..2-8

Figure 2-4. Instruction Routing in Logical Pipes and Physical Pipes ..2-10

Figure 3-1. CPU Instruction Formats...3-3

Figure 3-2. Big-Endian Byte Ordering ...3-6

Figure 3-3. Little-Endian Byte Ordering ...3-6

Figure 3-4. Little-Endian Data in a Doubleword ..3-7

Figure 3-5. Big-Endian Data in a Doubleword...3-7

Figure 3-6. Big-Endian Misaligned Word Addressing..3-8

Figure 3-7. Little-Endian Misaligned Word Addressing ...3-8

Figure 4-1. CPU Registers...4-3

Figure 4-2. Index Register ...4-6

Figure 4-3. Random Register ..4-7

Figure 4-4. EntryLo0 and EntryLo1 Registers ...4-8

Figure 4-5. Context Register Format ...4-9

Figure 4-6. PageMask Register ...4-10

Figure 4-7. Wired Register...4-11

Figure 4-8. Wired Register Boundary ..4-11

Figure 4-9. BadVAddr Register..4-12

Figure 4-10. Count Register ..4-13

Figure 4-11. EntryHi Register ..4-14

Figure 4-12. Compare Register ...4-15

Figure 4-13. Status Register..4-16

Figure 4-14. Cause Register..4-19

Figure 4-15. EPC Register...4-21

Figure 4-16. PRId Register ..4-22

Figure 4-17. Config Register Format ...4-23

Figure 4-18. BadPAddr Register Format ...4-25

Figure 4-19. Performance Counter Registers ...4-28

Figure 4-20. TagLo and TagHi Registers ...4-31

Figure 4-21. ErrorEPC Register...4-33

Figure 5-1. Level 1 Exception processing flowchart..5-4

Figure 5-2. Level 2 Exception processing flowchart..5-6

Figure 6-1. Overview of a Virtual-to-Physical Address Translation...6-3

Figure 6-2. 32-bit Mode Virtual Address Translation...6-5

Figures

xi

Figure 6-3 State Transition among Operating Modes ...6-6

Figure 6-4. User Mode Virtual Address Space..6-8

Figure 6-5. Supervisor Mode Virtual Address Space ..6-10

Figure 6-6. Kernel Mode Address Space ..6-11

Figure 6-7. COP0 Registers and the TLB..6-14

Figure 6-8. Format of a TLB Entry ...6-15

Figure 6-9. TLB Address Translation...6-19

Figure 7-1. Organization of Data Cache..7-3

Figure 7-2. Organization of Instruction Cache...7-4

Figure 7-3. Read Missed Processed in Sequential Order...7-10

Figure 7-4. Data Cache Transition Diagram, Writeback Protocol ...7-11

Figure 7-5. Instruction Cache Transition Diagram...7-12

Figure 8-1. CPU Bus Architecture ...8-4

Figure 8-2. CPU Bus Address and Control Path Connections in System.......................................8-5

Figure 8-3. CPU Bus Data Path Connections in System ..8-6

Figure 8-4. Connection of Arbitration Signals..8-14

Figure 8-5. Arbitration Protocol..8-15

Figure 8-6. Cycle Stealing Protocol ...8-15

Figure 8-7. CPU Single Reads ..8-16

Figure 8-8. CPU Single Writes...8-17

Figure 8-9. CPU Single Read-Write-Read-Write Cycles ...8-18

Figure 8-10. CPU Burst Reads ..8-19

Figure 8-11. CPU Burst Writes...8-20

Figure 8-12. CPU Burst Read-Write Cycles ..8-21

Figure 8-13. CPU Burst Write-Read Cycles ..8-21

Figure 8-14. CPU Non-Pipeline Single Reads ..8-22

Figure 8-15. CPU Non-Pipeline Single Writes...8-23

Figure 8-16. CPU Non-Pipeline Burst Reads ..8-23

Figure 8-17. CPU Non-Pipeline Burst Writes ..8-24

Figure 8-18. One Operation with BUSERR* as the Last SYSDACK* ...8-27

Figure 8-19. One Operation with BUSERR* as SYSAACK* ...8-27

Figure 8-20. One Operation with BUSERR* as SYSAACK* and the Last SYSDACK*8-28

Figure 8-21. Two Operations with Bus Error as the Last SYSDACK*...8-29

Figure 9-1. Format of the Performance Counter Control Register PCCR..9-2

Figure 9-2. Format of Performance Counter Registers PCR0 and PCR19-2

Figure 9-3. CAUSE Register Fields..9-10

Figure 10-1. FP Registers..10-3

Figure 10-2. Implementation/Revision Register ..10-5

Figure 10-3. FP Control/Status Register Bit Assignments ..10-6

Figure 10-4. Control/Status Register Cause, Flag, and Enable Fields ...10-7

Figures

xii

Figure 10-5. Single-Precision Floating-Point Format ..10-10

Figure 10-6. Double-Precision Floating-Point Format ...10-10

Figure 10-7. Binary Word Fixed-Point Format...10-12

Figure 10-8. Binary Long Fixed-Point Format ...10-12

Figure 11-1. Control/Status Register Exception/Flag/Trap/Enable Bits ..11-2

Figure 12-1. Priority of Outputting Jump or Exception Target ...12-7

Figure 12-2. Waveform for Sequential Excecution..12-9

Figure 12-3. Waveform for Conditional Branch ...12-10

Figure 12-4. Waveform for Indirect Jump (Target in Phase A)..12-11

Figure 12-5. Waveform for Indirect Jump (Target in Phase B)..12-12

Figure 12-6. Waveform for Indirect Jump (During Target PC Output)...12-13

Figure 12-7. Waveform for Exception (Target in Phase B)..12-14

Figure 12-8. Waveform for Exception (During Target PC Output)...12-15

Figure 12-9. Waveform for Exception Generated by Branch or Jump Instruction12-16

Figure 12-10. Waveform for Exception Generated by Branch Delay Slot Instruction..................12-17

Figure 12-11. Waveform for Exception Generated by Target Instruction12-18

Figure 12-12. Waveform for Back to Back Exceptions (Case I) ...12-19

Figure 12-13. Waveform for Back to Back Exceptions (Case II) ..12-20

Figure 13-1. Overall Structure of Hardware Breakpoint ..13-3

Figure 13-2. Instruction Address Breakpoint Register...13-7

Figure 13-3. Instruction Address Breakpoint Mask Register...13-7

Figure 13-4. Data Address Breakpoint Register..13-7

Figure 13-5. Data Address Breakpoint Mask Register..13-7

Figure 13-6. Data Value Breakpoint Register ..13-8

Figure 13-7. Data Value Breakpoint Mask Register ..13-8

Figure 13-8. Hardware Breakpoint detection flow (Setting) ..13-10

Figure 13-9. Hardware Breakpoint detection flow (IAB)..13-11

Figure 13-10. Hardware Breakpoint detection flow (DAB/DVB) (1/2) ...13-12

Figure A-1. CPU Instruction Formats ... A-9

Tables

xiii

TABLES

Table 1-1. Restriction List ...1-6

Table 2-1. Categories of Instructions and How They Are Routed ..2-11

Table 2-2. Concurrently Issued Instruction Categories ...2-13

Table 2-3. Coprocessor 0 Registers ..2-15

Table 3-1. Load / Store Instructions...3-4

Table 3-2. Multimedia Load / Store Instructions ..3-5

Table 3-3. Coprocessor Load / Store Instructions ...3-5

Table 3-4. Defining Access Types (Big-Endian) ..3-10

Table 3-5. Defining Access Types (Little-Endian)..3-12

Table 3-6. ALU Immediate Instructions..3-14

Table 3-7. Three Operand Register-Type Instructions ..3-15

Table 3-8. Shift Instructions ...3-15

Table 3-9. Multiply and Divide Instructions ..3-15

Table 3-10. Jump Instructions Jumping Within a 256 MByte Region..3-16

Table 3-11. Jump Instructions to Absolute Address ..3-16

Table 3-12. PC-Relative Conditional Branch Instructions Comparing 2 Registers3-17

Table 3-13. PC-Relative Conditional Branch Instructions Comparing Against Zero.....................3-17

Table 3-14. Exception Instructions...3-18

Table 3-15. Serialization Instructions...3-18

Table 3-16. MIPS IV Instructions ...3-19

Table 3-17. System Control Coprocessor Instructions ..3-20

Table 3-18. Coprocessor 1 Instructions ...3-21

Table 3-19. C790-Specific Multiply and Divide Instructions ..3-22

Table 3-20. Multimedia Instructions ...3-23

Table 3-21. Latencies and Repeat Rates for User Instruction...3-25

Table 4-1. Coprocessor 0 Registers ..4-5

Table 4-2. Index Register Field Description...4-6

Table 4-3. Random Register Fields ...4-7

Table 4-4. EntryLo0 and EntryLo1 Register Fields..4-8

Table 4-5. Context Register Fields...4-9

Table 4-6. PageMask Register Field..4-10

Table 4-7. Wired Register Field Descriptions ..4-11

Table 4-8. BadVAddr Register Field...4-12

Table 4-9. Count Register Field ...4-13

Table 4-10. EntryHi Register Fields ...4-14

Table 4-11. Compare Register Field ..4-15

Tables

xiv

Table 4-12. Status Register Fields...4-17

Table 4-13. Cause Register Fields...4-19

Table 4-14. EPC Register Field ...4-21

Table 4-15. PRId Register Fields ...4-22

Table 4-16. Config Register Fields...4-23

Table 4-17. BadPAddr Register Fields...4-25

Table 4-18. Performance Counter Control Register Fields ...4-29

Table 4-19. Performance Counter Register 0 Fields ...4-30

Table 4-20. Performance Counter Register 1 Fields ...4-30

Table 4-21. TagLo Register Fields ...4-32

Table 4-22. TagHi Register Fields..4-32

Table 4-23. ErrorEPC Register Field ...4-33

Table 5-1. Exception Levels...5-2

Table 5-2. Exception Vectors for Level 1 exceptions...5-7

Table 5-3. Exception Vectors for Level 2 exceptions...5-7

Table 5-4. Cause.ExcCode Field ...5-8

Table 5-5. Cause.EXC2 Field ..5-8

Table 5-6. Masking exceptions ...5-9

Table 5-7. Exception Priority Order..5-10

Table 6-1 Processor Modes ...6-6

Table 6-2. Address Space..6-7

Table 6-3. User Mode Segments ...6-9

Table 6-4. Supervisor Mode Segments ...6-10

Table 6-5. Kernel Mode Segments ..6-12

Table 6-6 TLB Page Coherency (C) Bit Values ...6-17

Table 6-7. TLB Instructions ..6-20

Table 7-1. Cache Configuration ...7-2

Table 7-2. Cache Size and Access Bits...7-5

Table 7-3. Data Cache Line States...7-6

Table 7-4. LRF Line Replacement Algorithm...7-8

Table 7-5. Quadword Retrieved Address PA[5:4]..7-10

Table 7-6. UCAB Configuration..7-14

Table 7-7. UCAB Size and Access Bits ...7-14

Table 8-1. System Signal Naming Convention ..8-3

Table 8-2. Bus Transaction Types ...8-8

Table 8-3. CPU Transfer Size ..8-9

Table 8-4. Bus Error Exceptions ..8-25

Table 8-5. Operation Termination Sequence ...8-26

Table 9-1. PCCR Register Bits ..9-2

Table 9-2. Writing Performance Counters and Registers using MTC0 ...9-3

Tables

xv

Table 9-3. Reading Performance Counters and Registers using MFC0...9-3

Table 9-4. Mnemonics to Access the Performance Counters and Registers...................................9-3

Table 9-5. Counter Events ...9-6

Table 9-6. Definition of Data Cache Miss ..9-7

Table 10-1. Floating-Point Control Register Assignments...10-4

Table 10-2. FCR0 Fields ..10-5

Table 10-3. Control/Status Register Fields ..10-6

Table 10-4. Flush Values of Denormalized Results...10-7

Table 10-5. Rounding Mode Bit Decoding...10-9

Table 10-6. Equations for Calculating Values in Single and

Double-Precision Floating-Point Format...10-11

Table 10-7. Floating-Point Format Parameter Values ...10-11

Table 10-8. Minimum and Maximum Floating-Point Values ..10-11

Table 10-9. Binary Fixed-Point Format Fields ...10-12

Table 10-10. FPU Instruction Set (Optional): Load, Move and Store Instruction10-13

Table 10-11. FPU Instruction Set(Optional): Conversion Instruction...10-14

Table 10-12. FPU Instruction Set(Optional): Computational Instruction10-14

Table 10-13. FPU Instruction Set(Optional): Compare and Branch Instruction10-15

Table 11-1.　Default FPU Exception Actions ...11-3

Table 11-2.　FPU Exception-Causing Conditions..11-4

Table 11-3.　Values of Overflow Results..11-7

Table 12-1. Classification of Branch and Jump Instruction ...12-2

Table 12-2. Exception Vector Address Codes ...12-6

Table 13-1. Set a new value into breakpoint registers ..13-4

Table 13-2. Get the value from breakpoint registers ...13-4

Table 13-3. BPC Register Fields..13-5

Table A-1. Symbols in Instruction Operation Statements... A-3

Table A-2. Coprocessor General Register Access Functions .. A-5

Table A-3. Load and Store Functions ... A-6

Table A-4. AccessLength Specifications for Loads / Stores... A-7

Table A-5. Miscellaneous Functions ... A-8

Table B-1. Quotient and Remainder Signs .. B-8

Table C-1. CACHE Instruction Op Field Encoding ...C-6

Table C-2. Data Tag Status Bit Modifications ..C-13

Table D-1. FPU Comparisons Without Special Operand Exceptions...D-9

Table D-2 FPU Comparisons With Special Operand Exceptions for QNaNsD-10

Tables

xvi

Handling Precautions

 1 Using Toshiba Semiconductors Safely

1-1

1. Using Toshiba Semiconductors Safely
TOSHIBA is continually working to improve the quality and the reliability of its products.

Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent
electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when
utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a
malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or
damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified
operating ranges as set forth in the most recent products specifications. Also, please keep in mind
the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 1 Using Toshiba Semiconductors Safely

1-2

2 Safety Precautions

2-1

2. Safety Precautions
This section lists important precautions which users of semiconductor devices (and anyone else)
should observe in order to avoid injury and damage to property, and to ensure safe and correct use
of devices.

Please be sure that you understand the meanings of the labels and the graphic symbol described
below before you move on to the detailed descriptions of the precautions.

[Explanation of labels][Explanation of labels][Explanation of labels][Explanation of labels]

Indicates an imminently hazardous situation which will result in death or
serious injury if you do not follow instructions.

Indicates a potentially hazardous situation which could result in death or
serious injury if you do not follow instructions.

Indicates a potentially hazardous situation which if not avoided, may result
in minor injury or moderate injury.

[Explanation of graphic symbol][Explanation of graphic symbol][Explanation of graphic symbol][Explanation of graphic symbol]

Graphic symbol Meaning

Indicates that caution is required (laser beam is dangerous to eyes).

2 Safety Precautions

2-2

2.1 General Precautions regarding Semiconductor Devices

Do not use devices under conditions exceeding their absolute maximum ratings (e.g. current, voltage, power dissipation or
temperature).
This may cause the device to break down, degrade its performance, or cause it to catch fire or explode resulting in injury.

Do not insert devices in the wrong orientation.
Make sure that the positive and negative terminals of power supplies are connected correctly. Otherwise the rated maximum
current or power dissipation may be exceeded and the device may break down or undergo performance degradation, causing it to
catch fire or explode and resulting in injury.

When power to a device is on, do not touch the device’s heat sink.
Heat sinks become hot, so you may burn your hand.

Do not touch the tips of device leads.
Because some types of device have leads with pointed tips, you may prick your finger.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing equipment’s electrodes or probes to
the pins of the device under test before powering it on.
Otherwise, you may receive an electric shock causing injury.

Before grounding an item of measuring equipment or a soldering iron, check that there is no electrical leakage from it.
Electrical leakage may cause the device which you are testing or soldering to break down, or could give you an electric shock.

Always wear protective glasses when cutting the leads of a device with clippers or a similar tool.
If you do not, small bits of metal flying off the cut ends may damage your eyes.

2 Safety Precautions

2-3

2.2 Precautions Specific to Each Product Group

2.2.1 Optical semiconductor devices

When a visible semiconductor laser is operating, do not look directly into the laser beam or look through the optical system.
This is highly likely to impair vision, and in the worst case may cause blindness.
If it is necessary to examine the laser apparatus, for example to inspect its optical characteristics, always wear the appropriate
type of laser protective glasses as stipulated by IEC standard IEC825-1.

Ensure that the current flowing in an LED device does not exceed the device’s maximum rated current.
This is particularly important for resin-packaged LED devices, as excessive current may cause the package resin to blow up,
scattering resin fragments and causing injury.

When testing the dielectric strength of a photocoupler, use testing equipment which can shut off the supply voltage to the
photocoupler. If you detect a leakage current of more than 100 µA, use the testing equipment to shut off the photocoupler’s
supply voltage; otherwise a large short-circuit current will flow continuously, and the device may break down or burst into flames,
resulting in fire or injury.

When incorporating a visible semiconductor laser into a design, use the device’s internal photodetector or a separate
photodetector to stabilize the laser’s radiant power so as to ensure that laser beams exceeding the laser’s rated radiant power
cannot be emitted.
If this stabilizing mechanism does not work and the rated radiant power is exceeded, the device may break down or the
excessively powerful laser beams may cause injury.

2.2.2 Power devices

Never touch a power device while it is powered on. Also, after turning off a power device, do not touch it until it has thoroughly
discharged all remaining electrical charge.
Touching a power device while it is powered on or still charged could cause a severe electric shock, resulting in death or serious
injury.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing equipment’s electrodes or probes to
the device under test before powering it on.
When you have finished, discharge any electrical charge remaining in the device.
Connecting the electrodes or probes of testing equipment to a device while it is powered on may result in electric shock, causing
injury.

2 Safety Precautions

2-4

Do not use devices under conditions which exceed their absolute maximum ratings (current, voltage, power dissipation,
temperature etc.).
This may cause the device to break down, causing a large short-circuit current to flow, which may in turn cause it to catch fire or
explode, resulting in fire or injury.

Use a unit which can detect short-circuit currents and which will shut off the power supply if a short-circuit occurs.
If the power supply is not shut off, a large short-circuit current will flow continuously, which may in turn cause the device to catch
fire or explode, resulting in fire or injury.

When designing a case for enclosing your system, consider how best to protect the user from shrapnel in the event of the device
catching fire or exploding.
Flying shrapnel can cause injury.

When conducting any kind of evaluation, inspection or testing, always use protective safety tools such as a cover for the device.
Otherwise you may sustain injury caused by the device catching fire or exploding.

Make sure that all metal casings in your design are grounded to earth.
Even in modules where a device’s electrodes and metal casing are insulated, capacitance in the module may cause the
electrostatic potential in the casing to rise.
Dielectric breakdown may cause a high voltage to be applied to the casing, causing electric shock and injury to anyone touching it.

When designing the heat radiation and safety features of a system incorporating high-speed rectifiers, remember to take the
device’s forward and reverse losses into account.
The leakage current in these devices is greater than that in ordinary rectifiers; as a result, if a high-speed rectifier is used in an
extreme environment (e.g. at high temperature or high voltage), its reverse loss may increase, causing thermal runaway to occur.
This may in turn cause the device to explode and scatter shrapnel, resulting in injury to the user.

A design should ensure that, except when the main circuit of the device is active, reverse bias is applied to the device gate while
electricity is conducted to control circuits, so that the main circuit will become inactive.
Malfunction of the device may cause serious accidents or injuries.

When conducting any kind of evaluation, inspection or testing, either wear protective gloves or wait until the device has cooled
properly before handling it.
Devices become hot when they are operated. Even after the power has been turned off, the device will retain residual heat which
may cause a burn to anyone touching it.

2.2.3 Bipolar ICs (for use in automobiles)

If your design includes an inductive load such as a motor coil, incorporate diodes or similar devices into the design to prevent
negative current from flowing in.
The load current generated by powering the device on and off may cause it to function erratically or to break down, which could in
turn cause injury.

Ensure that the power supply to any device which incorporates protective functions is stable.
If the power supply is unstable, the device may operate erratically, preventing the protective functions from working correctly. If
protective functions fail, the device may break down causing injury to the user.

3 General Safety Precautions and Usage Considerations

3-1

3. General Safety Precautions and Usage Considerations
This section is designed to help you gain a better understanding of semiconductor devices, so as to
ensure the safety, quality and reliability of the devices which you incorporate into your designs.

3.1 From Incoming to Shipping

3.1.1 Electrostatic discharge (ESD)
When handling individual devices (which are not yet mounted on a printed
circuit board), be sure that the environment is protected against
electrostatic electricity. Operators should wear anti-static clothing, and
containers and other objects which come into direct contact with devices
should be made of anti-static materials and should be grounded to earth via
an 0.5- to 1.0-MΩ protective resistor.

Please follow the precautions described below; this is particularly important
for devices which are marked “Be careful of static.”.

(1) Work environment

• When humidity in the working environment decreases, the human body and other insulators
can easily become charged with static electricity due to friction. Maintain the recommended
humidity of 40% to 60% in the work environment, while also taking into account the fact that
moisture-proof-packed products may absorb moisture after unpacking.

• Be sure that all equipment, jigs and tools in the working area are grounded to earth.

• Place a conductive mat over the floor of the work area, or take other appropriate measures, so
that the floor surface is protected against static electricity and is grounded to earth. The surface
resistivity should be 104 to 108 Ω/sq and the resistance between surface and ground, 7.5 × 105 to
108 Ω

• Cover the workbench surface also with a conductive mat (with a surface resistivity of 104 to
108 Ω/sq, for a resistance between surface and ground of 7.5 × 105 to 108 Ω) . The purpose of this
is to disperse static electricity on the surface (through resistive components) and ground it to
earth. Workbench surfaces must not be constructed of low-resistance metallic materials that
allow rapid static discharge when a charged device touches them directly.

• Pay attention to the following points when using automatic equipment in your workplace:

(a) When picking up ICs with a vacuum unit, use a conductive rubber fitting on the end of the
pick-up wand to protect against electrostatic charge.

(b) Minimize friction on IC package surfaces. If some rubbing is unavoidable due to the device’s
mechanical structure, minimize the friction plane or use material with a small friction
coefficient and low electrical resistance. Also, consider the use of an ionizer.

(c) In sections which come into contact with device lead terminals, use a material which
dissipates static electricity.

(d) Ensure that no statically charged bodies (such as work clothes or the human body) touch
the devices.

3 General Safety Precautions and Usage Considerations

3-2

(e) Make sure that sections of the tape carrier which come into contact with installation
devices or other electrical machinery are made of a low-resistance material.

(f) Make sure that jigs and tools used in the assembly process do not touch devices.

(g) In processes in which packages may retain an electrostatic charge, use an ionizer to
neutralize the ions.

• Make sure that CRT displays in the working area are protected against static charge, for
example by a VDT filter. As much as possible, avoid turning displays on and off. Doing so can
cause electrostatic induction in devices.

• Keep track of charged potential in the working area by taking periodic measurements.

• Ensure that work chairs are protected by an anti-static textile cover and are grounded to the
floor surface by a grounding chain. (Suggested resistance between the seat surface and
grounding chain is 7.5 × 105 to 1012Ω.)

• Install anti-static mats on storage shelf surfaces. (Suggested surface resistivity is 104 to 108

Ω/sq; suggested resistance between surface and ground is 7.5 × 105 to 108 Ω.)

• For transport and temporary storage of devices, use containers (boxes, jigs or bags) that are
made of anti-static materials or materials which dissipate electrostatic charge.

• Make sure that cart surfaces which come into contact with device packaging are made of
materials which will conduct static electricity, and verify that they are grounded to the floor
surface via a grounding chain.

• In any location where the level of static electricity is to be closely controlled, the ground
resistance level should be Class 3 or above. Use different ground wires for all items of
equipment which may come into physical contact with devices.

(2) Operating environment

• Operators must wear anti-static clothing and conductive shoes (or
a leg or heel strap).

• Operators must wear a wrist strap grounded to earth via a
resistor of about 1 MΩ.

• Soldering irons must be grounded from iron tip to earth, and must be used only at low voltages
(6 V to 24 V).

• If the tweezers you use are likely to touch the device terminals, use anti-static tweezers and in
particular avoid metallic tweezers. If a charged device touches a low-resistance tool, rapid
discharge can occur. When using vacuum tweezers, attach a conductive chucking pat to the tip,
and connect it to a dedicated ground used especially for anti-static purposes (suggested
resistance value: 104 to 108 Ω).

• Do not place devices or their containers near sources of strong electrical fields (such as above a
CRT).

3 General Safety Precautions and Usage Considerations

3-3

• When storing printed circuit boards which have devices mounted on them, use a board
container or bag that is protected against static charge. To avoid the occurrence of static charge
or discharge due to friction, keep the boards separate from one other and do not stack them
directly on top of one another.

• Ensure, if possible, that any articles (such as clipboards) which are brought to any location
where the level of static electricity must be closely controlled are constructed of anti-static
materials.

• In cases where the human body comes into direct contact with a device, be sure to wear anti-
static finger covers or gloves (suggested resistance value: 108 Ω or less).

• Equipment safety covers installed near devices should have resistance ratings of 109 Ω or less.

• If a wrist strap cannot be used for some reason, and there is a possibility of imparting friction to
devices, use an ionizer.

• The transport film used in TCP products is manufactured from materials in which static
charges tend to build up. When using these products, install an ionizer to prevent the film from
being charged with static electricity. Also, ensure that no static electricity will be applied to the
product’s copper foils by taking measures to prevent static occuring in the peripheral
equipment.

3.1.2 Vibration, impact and stress
Handle devices and packaging materials with care. To avoid damage
to devices, do not toss or drop packages. Ensure that devices are not
subjected to mechanical vibration or shock during transportation.
Ceramic package devices and devices in canister-type packages which
have empty space inside them are subject to damage from vibration
and shock because the bonding wires are secured only at their ends.

Plastic molded devices, on the other hand, have a relatively high level
of resistance to vibration and mechanical shock because their bonding
wires are enveloped and fixed in resin. However, when any device or package type is installed in
target equipment, it is to some extent susceptible to wiring disconnections and other damage from
vibration, shock and stressed solder junctions. Therefore when devices are incorporated into the
design of equipment which will be subject to vibration, the structural design of the equipment
must be thought out carefully.

If a device is subjected to especially strong vibration, mechanical shock or stress, the package or
the chip itself may crack. In products such as CCDs which incorporate window glass, this could
cause surface flaws in the glass or cause the connection between the glass and the ceramic to
separate.

Furthermore, it is known that stress applied to a semiconductor device through the package
changes the resistance characteristics of the chip because of piezoelectric effects. In analog circuit
design attention must be paid to the problem of package stress as well as to the dangers of
vibration and shock as described above.

Vibration

3 General Safety Precautions and Usage Considerations

3-4

3.2 Storage

3.2.1 General storage
• Avoid storage locations where devices will be exposed to moisture or direct sunlight.

• Follow the instructions printed on the device cartons regarding
transportation and storage.

• The storage area temperature should be kept within a
temperature range of 5°C to 35°C, and relative humidity should
be maintained at between 45% and 75%.

• Do not store devices in the presence of harmful (especially
corrosive) gases, or in dusty conditions.

• Use storage areas where there is minimal temperature fluctuation. Rapid temperature changes
can cause moisture to form on stored devices, resulting in lead oxidation or corrosion. As a result,
the solderability of the leads will be degraded.

• When repacking devices, use anti-static containers.

• Do not allow external forces or loads to be applied to devices while they are in storage.

• If devices have been stored for more than two years, their electrical characteristics should be
tested and their leads should be tested for ease of soldering before they are used.

3.2.2 Moisture-proof packing
Moisture-proof packing should be handled with care. The handling
procedure specified for each packing type should be followed scrupulously.
If the proper procedures are not followed, the quality and reliability of
devices may be degraded. This section describes general precautions for
handling moisture-proof packing. Since the details may differ from device
to device, refer also to the relevant individual datasheets or databook.

(1) General precautions
Follow the instructions printed on the device cartons regarding transportation and storage.

• Do not drop or toss device packing. The laminated aluminum material in it can be rendered
ineffective by rough handling.

• The storage area temperature should be kept within a temperature range of 5°C to 30°C, and
relative humidity should be maintained at 90% (max). Use devices within 12 months of the date
marked on the package seal.

　　

Humidity: Temperature:

3 General Safety Precautions and Usage Considerations

3-5

• If the 12-month storage period has expired, or if the 30% humidity indicator shown in Figure 1
is pink when the packing is opened, it may be advisable, depending on the device and packing
type, to back the devices at high temperature to remove any moisture. Please refer to the table
below. After the pack has been opened, use the devices in a 5°C to 30°C. 60% RH environment
and within the effective usage period listed on the moisture-proof package. If the effective usage
period has expired, or if the packing has been stored in a high-humidity environment, back the
devices at high temperature.

Packing Moisture removal

Tray If the packing bears the “Heatproof” marking or indicates the maximum temperature which it can
withstand, bake at 125°C for 20 hours. (Some devices require a different procedure.)

Tube Transfer devices to trays bearing the “Heatproof” marking or indicating the temperature which they
can withstand, or to aluminum tubes before baking at 125°C for 20 hours.

Tape Deviced packed on tape cannot be baked and must be used within the effective usage period after
unpacking, as specified on the packing.

• When baking devices, protect the devices from static electricity.

• Moisture indicators can detect the approximate humidity level at a standard temperature of
25°C. 6-point indicators and 3-point indicators are currently in use, but eventually all indicators
will be 3-point indicators.

D
AN

G
ER

 IF
 P

IN
K

C
H

AN
G

E
 D

ES
IC

C
AN

T

READ AT LAVENDER
BETWEEN PINK & BLUE

10%

20%

30%

40%

50%

60%

HUMIDITY INDICATOR

D
AN

G
ER

 IF
 P

IN
K

READ AT LAVENDER
BETWEEN PINK & BLUE

20

30

40

HUMIDITY INDICATOR

(a) 6-point indicator (b) 3-point indicator

Figure 1 Humidity indicator

3 General Safety Precautions and Usage Considerations

3-6

3.3 Design
Care must be exercised in the design of electronic equipment to achieve the desired reliability. It is
important not only to adhere to specifications concerning absolute maximum ratings and
recommended operating conditions, it is also important to consider the overall environment in
which equipment will be used, including factors such as the ambient temperature, transient noise
and voltage and current surges, as well as mounting conditions which affect device reliability. This
section describes some general precautions which you should observe when designing circuits and
when mounting devices on printed circuit boards.

For more detailed information about each product family, refer to the relevant individual technical
datasheets available from Toshiba.

3.3.1 Absolute maximum ratings
Do not use devices under conditions in which their absolute maximum ratings
(e.g. current, voltage, power dissipation or temperature) will be exceeded. A
device may break down or its performance may be degraded, causing it to
catch fire or explode resulting in injury to the user.

The absolute maximum ratings are rated values which must not be
exceeded during operation, even for an instant. Although absolute
maximum ratings differ from product to product, they essentially
concern the voltage and current at each pin, the allowable power
dissipation, and the junction and storage temperatures.

If the voltage or current on any pin exceeds the absolute maximum
rating, the device’s internal circuitry can become degraded. In the worst
case, heat generated in internal circuitry can fuse wiring or cause the semiconductor chip to break
down.

If storage or operating temperatures exceed rated values, the package seal can deteriorate or the
wires can become disconnected due to the differences between the thermal expansion coefficients
of the materials from which the device is constructed.

3.3.2 Recommended operating conditions
The recommended operating conditions for each device are those necessary to guarantee that the
device will operate as specified in the datasheet.
If greater reliability is required, derate the device’s absolute maximum ratings for voltage, current,
power and temperature before using it.

3.3.3 Derating
When incorporating a device into your design, reduce its rated absolute maximum voltage, current,
power dissipation and operating temperature in order to ensure high reliability.
Since derating differs from application to application, refer to the technical datasheets available
for the various devices used in your design.

3.3.4 Unused pins
If unused pins are left open, some devices can exhibit input instability problems, resulting in
malfunctions such as abrupt increase in current flow. Similarly, if the unused output pins on a
device are connected to the power supply pin, the ground pin or to other output pins, the IC may
malfunction or break down.

3 General Safety Precautions and Usage Considerations

3-7

Since the details regarding the handling of unused pins differ from device to device and from pin
to pin, please follow the instructions given in the relevant individual datasheets or databook.

CMOS logic IC inputs, for example, have extremely high impedance. If an input pin is left open, it
can easily pick up extraneous noise and become unstable. In this case, if the input voltage level
reaches an intermediate level, it is possible that both the P-channel and N-channel transistors
will be turned on, allowing unwanted supply current to flow. Therefore, ensure that the unused
input pins of a device are connected to the power supply (Vcc) pin or ground (GND) pin of the same
device. For details of what to do with the pins of heat sinks, refer to the relevant technical
datasheet and databook.

3.3.5 Latch-up
Latch-up is an abnormal condition inherent in CMOS devices, in which Vcc gets shorted to ground.
This happens when a parasitic PN-PN junction (thyristor structure) internal to the CMOS chip is
turned on, causing a large current of the order of several hundred mA or more to flow between Vcc
and GND, eventually causing the device to break down.

Latch-up occurs when the input or output voltage exceeds the rated value, causing a large current
to flow in the internal chip, or when the voltage on the Vcc (Vdd) pin exceeds its rated value,
forcing the internal chip into a breakdown condition. Once the chip falls into the latch-up state,
even though the excess voltage may have been applied only for an instant, the large current
continues to flow between Vcc (Vdd) and GND (Vss). This causes the device to heat up and, in
extreme cases, to emit gas fumes as well. To avoid this problem, observe the following precautions:

(1) Do not allow voltage levels on the input and output pins either to rise above Vcc (Vdd) or to
fall below GND (Vss). Also, follow any prescribed power-on sequence, so that power is applied
gradually or in steps rather than abruptly.

(2) Do not allow any abnormal noise signals to be applied to the device.

(3) Set the voltage levels of unused input pins to Vcc (Vdd) or GND (Vss).

(4) Do not connect output pins to one another.

3.3.6 Input/Output protection
Wired-AND configurations, in which outputs are connected together, cannot be used, since this
short-circuits the outputs. Outputs should, of course, never be connected to Vcc (Vdd) or GND
(Vss).

Furthermore, ICs with tri-state outputs can undergo performance degradation if a shorted output
current is allowed to flow for an extended period of time. Therefore, when designing circuits, make
sure that tri-state outputs will not be enabled simultaneously.

3.3.7 Load capacitance
Some devices display increased delay times if the load capacitance is large. Also, large charging
and discharging currents will flow in the device, causing noise. Furthermore, since outputs are
shorted for a relatively long time, wiring can become fused.

Consult the technical information for the device being used to determine the recommended load
capacitance.

3 General Safety Precautions and Usage Considerations

3-8

3.3.8 Thermal design
The failure rate of semiconductor devices is greatly increased as operating temperatures increase.
As shown in Figure 2, the internal thermal stress on a device is the sum of the ambient
temperature and the temperature rise due to power dissipation in the device. Therefore, to
achieve optimum reliability, observe the following precautions concerning thermal design:

(1) Keep the ambient temperature (Ta) as low as possible.

(2) If the device’s dynamic power dissipation is relatively large, select the most appropriate
circuit board material, and consider the use of heat sinks or of forced air cooling. Such
measures will help lower the thermal resistance of the package.

(3) Derate the device’s absolute maximum ratings to minimize thermal stress from power
dissipation.
θja = θjc + θca
θja = (Tj–Ta) / P
θjc = (Tj–Tc) / P
θca = (Tc–Ta) / P
in which θja = thermal resistance between junction and surrounding air (°C/W)

θjc = thermal resistance between junction and package surface, or internal thermal
resistance (°C/W)

θca = thermal resistance between package surface and surrounding air, or external
 thermal resistance (°C/W)

Tj = junction temperature or chip temperature (°C)
Tc = package surface temperature or case temperature (°C)
Ta = ambient temperature (°C)
P = power dissipation (W)

Tc

θca

Ta

Tj
θjc

Figure 2 Thermal resistance of package

3.3.9 Interfacing
When connecting inputs and outputs between devices, make sure input voltage (VIL/VIH) and
output voltage (VOL/VOH) levels are matched. Otherwise, the devices may malfunction. When
connecting devices operating at different supply voltages, such as in a dual-power-supply system,
be aware that erroneous power-on and power-off sequences can result in device breakdown. For
details of how to interface particular devices, consult the relevant technical datasheets and
databooks. If you have any questions or doubts about interfacing, contact your nearest Toshiba
office or distributor.

3 General Safety Precautions and Usage Considerations

3-9

3.3.10 Decoupling
Spike currents generated during switching can cause Vcc (Vdd) and GND (Vss) voltage levels to
fluctuate, causing ringing in the output waveform or a delay in response speed. (The power supply
and GND wiring impedance is normally 50 Ω to 100 Ω.) For this reason, the impedance of power
supply lines with respect to high frequencies must be kept low. This can be accomplished by using
thick and short wiring for the Vcc (Vdd) and GND (Vss) lines and by installing decoupling
capacitors (of approximately 0.01 µF to 1 µF capacitance) as high-frequency filters between Vcc
(Vdd) and GND (Vss) at strategic locations on the printed circuit board.

For low-frequency filtering, it is a good idea to install a 10- to 100-µF capacitor on the printed
circuit board (one capacitor will suffice). If the capacitance is excessively large, however, (e.g.
several thousand µF) latch-up can be a problem. Be sure to choose an appropriate capacitance
value.

An important point about wiring is that, in the case of high-speed logic ICs, noise is caused mainly
by reflection and crosstalk, or by the power supply impedance. Reflections cause increased signal
delay, ringing, overshoot and undershoot, thereby reducing the device’s safety margins with
respect to noise. To prevent reflections, reduce the wiring length by increasing the device
mounting density so as to lower the inductance (L) and capacitance (C) in the wiring. Extreme
care must be taken, however, when taking this corrective measure, since it tends to cause
crosstalk between the wires. In practice, there must be a trade-off between these two factors.

3.3.11 External noise
Printed circuit boards with long I/O or signal pattern lines are
vulnerable to induced noise or surges from outside sources.
Consequently, malfunctions or breakdowns can result from
overcurrent or overvoltage, depending on the types of device
used. To protect against noise, lower the impedance of the
pattern line or insert a noise-canceling circuit. Protective
measures must also be taken against surges.

For details of the appropriate protective measures for a
particular device, consult the relevant databook.

3.3.12 Electromagnetic interference
Widespread use of electrical and electronic equipment in recent years has brought with it radio
and TV reception problems due to electromagnetic interference. To use the radio spectrum
effectively and to maintain radio communications quality, each country has formulated
regulations limiting the amount of electromagnetic interference which can be generated by
individual products.

Electromagnetic interference includes conduction noise propagated through power supply and
telephone lines, and noise from direct electromagnetic waves radiated by equipment. Different
measurement methods and corrective measures are used to assess and counteract each specific
type of noise.

Difficulties in controlling electromagnetic interference derive from the fact that there is no
method available which allows designers to calculate, at the design stage, the strength of the
electromagnetic waves which will emanate from each component in a piece of equipment. For this
reason, it is only after the prototype equipment has been completed that the designer can take
measurements using a dedicated instrument to determine the strength of electromagnetic
interference waves. Yet it is possible during system design to incorporate some measures for the
prevention of electromagnetic interference, which can facilitate taking corrective measures once
the design has been completed. These include installing shields and noise filters, and increasing

Input/Output
Signals

3 General Safety Precautions and Usage Considerations

3-10

the thickness of the power supply wiring patterns on the printed circuit board. One effective
method, for example, is to devise several shielding options during design, and then select the most
suitable shielding method based on the results of measurements taken after the prototype has
been completed.

3.3.13 Peripheral circuits
In most cases semiconductor devices are used with peripheral circuits and components. The input
and output signal voltages and currents in these circuits must be chosen to match the
semiconductor device’s specifications. The following factors must be taken into account.

(1) Inappropriate voltages or currents applied to a device’s input pins may cause it to operate
erratically. Some devices contain pull-up or pull-down resistors. When designing your system,
remember to take the effect of this on the voltage and current levels into account.

(2) The output pins on a device have a predetermined external circuit drive capability. If this
drive capability is greater than that required, either incorporate a compensating circuit into
your design or carefully select suitable components for use in external circuits.

3.3.14 Safety standards
Each country has safety standards which must be observed. These safety standards include
requirements for quality assurance systems and design of device insulation. Such requirements
must be fully taken into account to ensure that your design conforms to the applicable safety
standards.

3.3.15 Other precautions
(1) When designing a system, be sure to incorporate fail-safe and other appropriate measures

according to the intended purpose of your system. Also, be sure to debug your system under
actual board-mounted conditions.

(2) If a plastic-package device is placed in a strong electric field, surface leakage may occur due to
the charge-up phenomenon, resulting in device malfunction. In such cases take appropriate
measures to prevent this problem, for example by protecting the package surface with a
conductive shield.

(3) With some microcomputers and MOS memory devices, caution is required when powering on
or resetting the device. To ensure that your design does not violate device specifications,
consult the relevant databook for each constituent device.

(4) Ensure that no conductive material or object (such as a metal pin) can drop onto and short the
leads of a device mounted on a printed circuit board.

3.4 Inspection, Testing and Evaluation

3.4.1 Grounding
Ground all measuring instruments, jigs, tools and soldering irons to earth.
Electrical leakage may cause a device to break down or may result in electric
shock.

3 General Safety Precautions and Usage Considerations

3-11

3.4.2 Inspection Sequence
 Do not insert devices in the wrong orientation. Make sure that the positive
and negative electrodes of the power supply are correctly connected.
Otherwise, the rated maximum current or maximum power dissipation
may be exceeded and the device may break down or undergo performance
degradation, causing it to catch fire or explode, resulting in injury to the
user.

 When conducting any kind of evaluation, inspection or testing using AC
power with a peak voltage of 42.4 V or DC power exceeding 60 V, be sure to
connect the electrodes or probes of the testing equipment to the device
under test before powering it on. Connecting the electrodes or probes of
testing equipment to a device while it is powered on may result in electric
shock, causing injury.

(1) Apply voltage to the test jig only after inserting the device securely into it. When applying or
removing power, observe the relevant precautions, if any.

(2) Make sure that the voltage applied to the device is off before removing the device from the
test jig. Otherwise, the device may undergo performance degradation or be destroyed.

(3) Make sure that no surge voltages from the measuring equipment are applied to the device.

(4) The chips housed in tape carrier packages (TCPs) are bare chips and are therefore exposed.
During inspection take care not to crack the chip or cause any flaws in it.
Electrical contact may also cause a chip to become faulty. Therefore make sure that nothing
comes into electrical contact with the chip.

3.5 Mounting
There are essentially two main types of semiconductor device package: lead insertion and surface
mount. During mounting on printed circuit boards, devices can become contaminated by flux or
damaged by thermal stress from the soldering process. With surface-mount devices in particular,
the most significant problem is thermal stress from solder reflow, when the entire package is
subjected to heat. This section describes a recommended temperature profile for each mounting
method, as well as general precautions which you should take when mounting devices on printed
circuit boards. Note, however, that even for devices with the same package type, the appropriate
mounting method varies according to the size of the chip and the size and shape of the lead frame.
Therefore, please consult the relevant technical datasheet and databook.

3.5.1 Lead forming
 Always wear protective glasses when cutting the leads of a device with
clippers or a similar tool. If you do not, small bits of metal flying off the cut
ends may damage your eyes.

 Do not touch the tips of device leads. Because some types of device have
leads with pointed tips, you may prick your finger.

Semiconductor devices must undergo a process in which the leads are cut and formed before the
devices can be mounted on a printed circuit board. If undue stress is applied to the interior of a
device during this process, mechanical breakdown or performance degradation can result. This is
attributable primarily to differences between the stress on the device’s external leads and the
stress on the internal leads. If the relative difference is great enough, the device’s internal leads,
adhesive properties or sealant can be damaged. Observe these precautions during the lead-
forming process (this does not apply to surface-mount devices):

3 General Safety Precautions and Usage Considerations

3-12

(1) Lead insertion hole intervals on the printed circuit board should match the lead pitch of the
device precisely.

(2) If lead insertion hole intervals on the printed circuit board do not precisely match the lead
pitch of the device, do not attempt to forcibly insert devices by pressing on them or by pulling
on their leads.

(3) For the minimum clearance specification between a device and a
printed circuit board, refer to the relevant device’s datasheet and
databook. If necessary, achieve the required clearance by forming
the device’s leads appropriately. Do not use the spacers which are
used to raise devices above the surface of the printed circuit board
during soldering to achieve clearance. These spacers normally
continue to expand due to heat, even after the solder has begun to solidify; this applies severe
stress to the device.

(4) Observe the following precautions when forming the leads of a device prior to mounting.

• Use a tool or jig to secure the lead at its base (where the lead meets the device package) while
bending so as to avoid mechanical stress to the device. Also avoid bending or stretching device
leads repeatedly.

• Be careful not to damage the lead during lead forming.

• Follow any other precautions described in the individual datasheets and databooks for each
device and package type.

3.5.2 Socket mounting
(1) When socket mounting devices on a printed circuit board, use sockets which match the

inserted device’s package.

(2) Use sockets whose contacts have the appropriate contact pressure. If the contact pressure is
insufficient, the socket may not make a perfect contact when the device is repeatedly inserted
and removed; if the pressure is excessively high, the device leads may be bent or damaged
when they are inserted into or removed from the socket.

(3) When soldering sockets to the printed circuit board, use sockets whose construction prevents
flux from penetrating into the contacts or which allows flux to be completely cleaned off.

(4) Make sure the coating agent applied to the printed circuit board for moisture-proofing
purposes does not stick to the socket contacts.

(5) If the device leads are severely bent by a socket as it is inserted or removed and you wish to
repair the leads so as to continue using the device, make sure that this lead correction is only
performed once. Do not use devices whose leads have been corrected more than once.

(6) If the printed circuit board with the devices mounted on it will be subjected to vibration from
external sources, use sockets which have a strong contact pressure so as to prevent the
sockets and devices from vibrating relative to one another.

3.5.3 Soldering temperature profile
The soldering temperature and heating time vary from device to device. Therefore, when
specifying the mounting conditions, refer to the individual datasheets and databooks for the
devices used.

3 General Safety Precautions and Usage Considerations

3-13

(1) Using a soldering iron

Complete soldering within ten seconds for lead temperatures of up to 260°C, or within three
seconds for lead temperatures of up to 350°C.

(2) Using medium infrared ray reflow

• Heating top and bottom with long or medium infrared rays is recommended (see Figure 3).

Long infrared ray heater (preheating)

Medium infrared ray heater
(reflow)

Product flow

Figure 3 Heating top and bottom with long or medium infrared rays

• Complete the infrared ray reflow process within 30 seconds at a package surface temperature of
between 210°C and 240°C.

• Refer to Figure 4 for an example of a good temperature profile for infrared or hot air reflow.

210

30
seconds
or less

Time (in seconds)

60-120
seconds

(°C)
240

160

140

Pa
ck

ag
e

su
rfa

ce
 te

m
pe

ra
tu

re

Figure 4 Sample temperature profile for infrared or hot air reflow

(3) Using hot air reflow

• Complete hot air reflow within 30 seconds at a package surface temperature of between 210°C
and 240°C.

• For an example of a recommended temperature profile, refer to Figure 4 above.

(4) Using solder flow

• Apply preheating for 60 to 120 seconds at a temperature of 150°C.

• For lead insertion-type packages, complete solder flow within 10 seconds with the
temperature at the stopper (or, if there is no stopper, at a location more than 1.5 mm from
the body) which does not exceed 260°C.

3 General Safety Precautions and Usage Considerations

3-14

• For surface-mount packages, complete soldering within 5 seconds at a temperature of 250°C or
less in order to prevent thermal stress in the device.

• Figure 5 shows an example of a recommended temperature profile for surface-mount packages
using solder flow.

5 seconds
or less

60-120 seconds

(°C)
250

160

140

Pa
ck

ag
e

su
rfa

ce
 te

m
pe

ra
tu

re

Time (in seconds)

Figure 5 Sample temperature profile for solder flow

3.5.4 Flux cleaning and ultrasonic cleaning
(1) When cleaning circuit boards to remove flux, make sure that no residual reactive ions such as

Na or Cl remain. Note that organic solvents react with water to generate hydrogen chloride
and other corrosive gases which can degrade device performance.

(2) Washing devices with water will not cause any problems. However, make sure that no
reactive ions such as sodium and chlorine are left as a residue. Also, be sure to dry devices
sufficiently after washing.

(3) Do not rub device markings with a brush or with your hand during cleaning or while the
devices are still wet from the cleaning agent. Doing so can rub off the markings.

(4) The dip cleaning, shower cleaning and steam cleaning processes all involve the chemical
action of a solvent. Use only recommended solvents for these cleaning methods. When
immersing devices in a solvent or steam bath, make sure that the temperature of the liquid is
50°C or below, and that the circuit board is removed from the bath within one minute.

(5) Ultrasonic cleaning should not be used with hermetically-sealed ceramic packages such as a
leadless chip carrier (LCC), pin grid array (PGA) or charge-coupled device (CCD), because the
bonding wires can become disconnected due to resonance during the cleaning process. Even if
a device package allows ultrasonic cleaning, limit the duration of ultrasonic cleaning to as
short a time as possible, since long hours of ultrasonic cleaning degrade the adhesion between
the mold resin and the frame material. The following ultrasonic cleaning conditions are
recommended:

Frequency: 27 kHz ∼ 29 kHz

Ultrasonic output power: 300 W or less (0.25 W/cm2 or less)

Cleaning time: 30 seconds or less

Suspend the circuit board in the solvent bath during ultrasonic cleaning in such a way that
the ultrasonic vibrator does not come into direct contact with the circuit board or the device.

3 General Safety Precautions and Usage Considerations

3-15

3.5.5 No cleaning
If analog devices or high-speed devices are used without being cleaned, flux residues may cause
minute amounts of leakage between pins. Similarly, dew condensation, which occurs in
environments containing residual chlorine when power to the device is on, may cause between-
lead leakage or migration. Therefore, Toshiba recommends that these devices be cleaned.
However, if the flux used contains only a small amount of halogen (0.05W% or less), the devices
may be used without cleaning without any problems.

3.5.6 Mounting tape carrier packages (TCPs)
(1) When tape carrier packages (TCPs) are mounted, measures must be taken to prevent

electrostatic breakdown of the devices.

(2) If devices are being picked up from tape, or outer lead bonding (OLB) mounting is being
carried out, consult the manufacturer of the insertion machine which is being used, in order
to establish the optimum mounting conditions in advance and to avoid any possible hazards.

(3) The base film, which is made of polyimide, is hard and thin. Be careful not to cut or scratch
your hands or any objects while handling the tape.

(4) When punching tape, try not to scatter broken pieces of tape too much.

(5) Treat the extra film, reels and spacers left after punching as industrial waste, taking care not
to destroy or pollute the environment.

(6) Chips housed in tape carrier packages (TCPs) are bare chips and therefore have their reverse
side exposed. To ensure that the chip will not be cracked during mounting, ensure that no
mechanical shock is applied to the reverse side of the chip. Electrical contact may also cause a
chip to fail. Therefore, when mounting devices, make sure that nothing comes into electrical
contact with the reverse side of the chip.
If your design requires connecting the reverse side of the chip to the circuit board, please
consult Toshiba or a Toshiba distributor beforehand.

3.5.7 Mounting chips
Devices delivered in chip form tend to degrade or break under external forces much more easily
than plastic-packaged devices. Therefore, caution is required when handling this type of device.

(1) Mount devices in a properly prepared environment so that chip surfaces will not be exposed to
polluted ambient air or other polluted substances.

(2) When handling chips, be careful not to expose them to static electricity.
In particular, measures must be taken to prevent static damage during the mounting of chips.
With this in mind, Toshiba recommend mounting all peripheral parts first and then mounting
chips last (after all other components have been mounted).

(3) Make sure that PCBs (or any other kind of circuit board) on which chips are being mounted do
not have any chemical residues on them (such as the chemicals which were used for etching
the PCBs).

(4) When mounting chips on a board, use the method of assembly that is most suitable for
maintaining the appropriate electrical, thermal and mechanical properties of the
semiconductor devices used.

* For details of devices in chip form, refer to the relevant device’s individual datasheets.

3 General Safety Precautions and Usage Considerations

3-16

3.5.8 Circuit board coating
When devices are to be used in equipment requiring a high degree of reliability or in extreme
environments (where moisture, corrosive gas or dust is present), circuit boards may be coated for
protection. However, before doing so, you must carefully consider the possible stress and
contamination effects that may result and then choose the coating resin which results in the
minimum level of stress to the device.

3.5.9 Heat sinks
(1) When attaching a heat sink to a device, be careful not to apply excessive force to the device in

the process.

(2) When attaching a device to a heat sink by fixing it at two or more locations, evenly tighten all
the screws in stages (i.e. do not fully tighten one screw while the rest are still only loosely
tightened). Finally, fully tighten all the screws up to the specified torque.

(3) Drill holes for screws in the heat sink exactly as specified. Smooth the
surface by removing burrs and protrusions or indentations which might
interfere with the installation of any part of the device.

(4) A coating of silicone compound can be applied between the heat sink and
the device to improve heat conductivity. Be sure to apply the coating
thinly and evenly; do not use too much. Also, be sure to use a non-volatile
compound, as volatile compounds can crack after a time, causing the heat
radiation properties of the heat sink to deteriorate.

(5) If the device is housed in a plastic package, use caution when selecting the type of silicone
compound to be applied between the heat sink and the device. With some types, the base oil
separates and penetrates the plastic package, significantly reducing the useful life of the
device.
Two recommended silicone compounds in which base oil separation is not a problem are
YG6260 from Toshiba Silicone.

(6) Heat-sink-equipped devices can become very hot during operation. Do not touch them, or you
may sustain a burn.

3.5.10 Tightening torque
(1) Make sure the screws are tightened with fastening torques not exceeding the torque values

stipulated in individual datasheets and databooks for the devices used.

(2) Do not allow a power screwdriver (electrical or air-driven) to touch devices.

3.5.11 Repeated device mounting and usage
Do not remount or re-use devices which fall into the categories listed below; these devices may
cause significant problems relating to performance and reliability.

(1) Devices which have been removed from the board after soldering

(2) Devices which have been inserted in the wrong orientation or which have had reverse current
applied

(3) Devices which have undergone lead forming more than once

3 General Safety Precautions and Usage Considerations

3-17

3.6 Protecting Devices in the Field

3.6.1 Temperature
Semiconductor devices are generally more sensitive to temperature than are other electronic
components. The various electrical characteristics of a semiconductor device are dependent on the
ambient temperature at which the device is used. It is therefore necessary to understand the
temperature characteristics of a device and to incorporate device derating into circuit design. Note
also that if a device is used above its maximum temperature rating, device deterioration is more
rapid and it will reach the end of its usable life sooner than expected.

3.6.2 Humidity
Resin-molded devices are sometimes improperly sealed. When these devices are used for an
extended period of time in a high-humidity environment, moisture can penetrate into the device
and cause chip degradation or malfunction. Furthermore, when devices are mounted on a regular
printed circuit board, the impedance between wiring components can decrease under high-
humidity conditions. In systems which require a high signal-source impedance, circuit board
leakage or leakage between device lead pins can cause malfunctions. The application of a
moisture-proof treatment to the device surface should be considered in this case. On the other
hand, operation under low-humidity conditions can damage a device due to the occurrence of
electrostatic discharge. Unless damp-proofing measures have been specifically taken, use devices
only in environments with appropriate ambient moisture levels (i.e. within a relative humidity
range of 40% to 60%).

3.6.3 Corrosive gases
Corrosive gases can cause chemical reactions in devices, degrading device characteristics.
For example, sulphur-bearing corrosive gases emanating from rubber placed near a device
(accompanied by condensation under high-humidity conditions) can corrode a device’s leads. The
resulting chemical reaction between leads forms foreign particles which can cause electrical
leakage.

3.6.4 Radioactive and cosmic rays
Most industrial and consumer semiconductor devices are not designed with protection against
radioactive and cosmic rays. Devices used in aerospace equipment or in radioactive environments
must therefore be shielded.

3.6.5 Strong electrical and magnetic fields
Devices exposed to strong magnetic fields can undergo a polarization phenomenon in their
plastic material, or within the chip, which gives rise to abnormal symptoms such as impedance
changes or increased leakage current. Failures have been reported in LSIs mounted near
malfunctioning deflection yokes in TV sets. In such cases the device’s installation location must be
changed or the device must be shielded against the electrical or magnetic field. Shielding against
magnetism is especially necessary for devices used in an alternating magnetic field because of the
electromotive forces generated in this type of environment.

3 General Safety Precautions and Usage Considerations

3-18

3.6.6 Interference from light (ultraviolet rays, sunlight, fluorescent lamps and
incandescent lamps)

Light striking a semiconductor device generates electromotive force due to photoelectric effects. In
some cases the device can malfunction. This is especially true for devices in which the internal
chip is exposed. When designing circuits, make sure that devices are protected against incident
light from external sources. This problem is not limited to optical semiconductors and EPROMs.
All types of device can be affected by light.

3.6.7 Dust and oil
Just like corrosive gases, dust and oil can cause chemical reactions in devices, which will
adversely affect a device’s electrical characteristics. To avoid this problem, do not use devices in
dusty or oily environments. This is especially important for optical devices because dust and oil
can affect a device’s optical characteristics as well as its physical integrity and the electrical
performance factors mentioned above.

3.6.8 Fire
Semiconductor devices are combustible; they can emit smoke and catch fire if heated sufficiently.
When this happens, some devices may generate poisonous gases. Devices should therefore never
be used in close proximity to an open flame or a heat-generating body, or near flammable or
combustible materials.

3.7 Disposal of devices and packing materials
When discarding unused devices and packing materials, follow all procedures specified by local
regulations in order to protect the environment against contamination.

4 Precautions and Usage Considerations

4-1

4. Precautions and Usage Considerations
This section describes matters specific to each product group which need to be taken into
consideration when using devices. If the same item is described in Sections 3 and 4, the
description in Section 4 takes precedence.

4.1 Microcontrollers

4.1.1 Design
(1) Using resonators which are not specifically recommended for use

Resonators recommended for use with Toshiba products in microcontroller oscillator applications
are listed in Toshiba databooks along with information about oscillation conditions. If you use a
resonator not included in this list, please consult Toshiba or the resonator manufacturer
concerning the suitability of the device for your application.

(2) Undefined functions

In some microcontrollers certain instruction code values do not constitute valid processor
instructions. Also, it is possible that the values of bits in registers will become undefined. Take
care in your applications not to use invalid instructions or to let register bit values become
undefined.

4 Precautions and Usage Considerations

4-2

Chapter 1 Introduction

1-1

1. Introduction

This user’s manual describes the C790 superscalar microprocessor for the system designer,
paying special attention to the software interface and the bus interface.

The C790 is a superscalar integrated implementation of the subset of the 64-bit MIPS IV
Instruction Set Architecture. It also implements a large extension to this instruction set
specially tailored for multimedia applications. It contains a CPU, a floating point
execution unit (Coprocessor 1), primary instruction and data caches.

Two instructions can be decoded each cycle. These instructions are issued in-order and are
always completed in-order1. Data cache misses are non-blocking. A single outstanding
cache miss does not stall the pipeline, so that load misses or uncached loads are retired
out-of-order. Multiply, Multiply-Accumulate, Divide, Prefetch, and Coprocessor 1
instructions are also retired out-of-order.

1 However, some instructions are retired out-of-order.

Chapter 1 Introduction

1-2

1.1 Features
The C790 core has the following features:

• 2-way superscalar pipeline
• 128-bit (two 64-bit) data path and 128-bit system bus
• Instruction set architecture

• 64-bit MIPS III instruction set implementation (except LL, SC, LLD and
SCD)

• Selected MIPS IV instruction set implementation (Prefetch and Move
conditional instructions)

• Three-operand Multiply and Multiply-Accumulate instructions
• 128-bit (Quadword) load/store instructions
• 128-bit multimedia instructions which configure the 128-bit data path as two

64-bit, four 32-bit, eight 16-bit or sixteen 8-bit paths
• Configurable Endianness

• Branch prediction with Branch History Table (BHT) and Branch Target Address
Cache (BTAC)

• Large on-chip caches
• Instruction cache: 32KB, 2-way set associative
• Data cache: 32KB, 2-way set-associative (with write-back protocol)
• Non-blocking load, hit under miss and early restart on first quadword
• Data cache line locking
• Prefetch functions
• 64 Byte cache line

• Fast integer Multiply and Multiply-Accumulate operations
• Memory management unit

• 48-entry (96 pages) fully associative translation look-aside buffer (TLB)
• 32-bit physical address space and 32-bit virtual address space

• IEEE754-1985 compatible FPU (MIPS III ISA supported)
• Performance counters supported
• Debug support

• Multi-stepping of instruction execution
• Hardware breakpoint on instruction addresses
• Hardware breakpoint on data address and data value
• PC tracing capability

• 128-bit demultiplexed data bus and 32-bit address bus
• Pipelined addresses
• Bus error supported
• Multiple masters supported

Chapter 1 Introduction

1-3

1.2 Related Documents
The following documents should be referenced:

[1] MIPS R4000 Microprocessor User’s Manual
[2] MIPS R10000 Microprocessor User’s Manual
[3] MIPS IV Instruction Set (Revision 3.2)

Chapter 1 Introduction

1-4

1.3 Revision History
Rev. 1.0: June 24th, 1999

Rev. 1.1: December 25th, 1999

Add IEEE754 compatible FPU feature (both single- and double-precision)

Rev. 1.2: March , 2000

Publish

Rev. 2.0: April , 2001

Fixed a lot of typo

Chapter 1 Introduction

1-5

1.4 Conventions Used in This Manual
The names of registers, fields, and instructions are italicized as in this example:

The Status register (SR) is a read/write register that contains the operating mode,
interrupt enabling, and diagnostic states of the processor.

When a name is first introduced, it is shown in bold type.bold type.bold type.bold type.

Ranges are denoted by a colon as in the following example:

The 4-bit Coprocessor Usability (CU[3:0]) field controls the usability of four possible
coprocessors.

Conventions used in instruction descriptions are defined at the beginning of Appendices A,
B, C, and D.

Chapter 1 Introduction

1-6

1.5 Restrictions for Use of the C790 CPU Core

1. Revision History

Revision Date Contents
1.0 4/2/2001 FLX01-FLX06; Restrictions for User's Manual Rev.2.0

Items 1 through 6 in the description below are the restrictions that must be obeyed
when using the C790 CPU core (User's Manual Rev.2.0).

Table 1-1. Restriction List

ID Contents
FLX01 TLB exceptions masks bus errors.
FLX02 Bus errors are masked when Status.ERL==1 or Status.EXL = 1.
FLX03 AdEL occurs in index-type ICACHE or BTAC CACHE instructions.
FLX04 kuseg becomes an uncached area when an error exception (Status.ERL = 1) occurs.
FLX05 First two instructions in an exception handler are executed as NOP when a bus error occurs.
FLX06 Unexpected instruction-fetch bus-errors occur when executing a Crashme program.

Chapter 1 Introduction

1-7

2. Description

2.1 TLB exceptions mask bus errors (FLX01)

2.1.1 Phenomenon

There are cases in which TLB exceptions occurring immediately after a bus error

mask the bus error and the bus error can not be detected.

2.1.2 Corrective measures

This is caused by bus error exceptions having a lower priority than TLB

exceptions in instruction fetch and data access (refer to “5.5.1 Exception Priority”).

Check the followings when programming a TLB exception handler.

1) Using the TLB exception handler, check for occurrence of any bus error

exceptions before a page refill.

2) Using the TLB exception handler, check for occurrence of any bus error

exceptions if a page that should be refilled is incorrect.

3) Using the TLB exception handler, execute at Status.EXL==0 and

Status.ERL==0 after the TLB exception handler stores to EPC, Cause, and

Status registers.

Pending bus errors can be confirmed by referring to Status.BEM.

Chapter 1 Introduction

1-8

2.2 Bus errors are masked when Status.ERL==1 or Status.EXL = 1 (FLX02)

2.2.1 Phenomenon

Even if a bus error occurs during instruction fetch in an exception handler

(Status.EXL==1 or Status.ERL==1), the CPU does not accept the exception and

executes instruction code with indeterminate values read from the bus.

2.2.2 Corrective measures

This is caused by bus error exceptions being masked by Status.EXL==1 or

Status.ERL==1. Do not cause exceptions due to instruction fetch in

Status.EXL==1 or Status.ERL==1. Generating exceptions in an exception handler

is dangerous. For example:

1) The JR instruction may potentially cause an address error or a bus error. Do

not use JR instruction in Status.EXL==1 or Status.ERL==1.

2) A mapped region may potentially cause a TLB exception. Be sure to execute

using an unmapped region like that below:

0x8000_0000 – 0x9FFF_FFFF: kseg0

0xA000_0000 – 0xBFFF_FFFF: kseg1

Chapter 1 Introduction

1-9

2.3 AdEL occurs in index-type ICACHE or BTAC CACHE instructions (FLX03)

2.3.1 Phenomenon

When executing index-type CACHE instructions below in either the User mode or

Supervisor mode, operation occasionally becomes undefined and generates AdEL

(Address Error exception; load and inst fetch).

There are five index-type ICACHE sub operations as listed below.

00111 CACHE IXIN I$ index invalidate

00000 CACHE IXLTG I$ index load tag

00100 CACHE IXSTG I$ index store tag

00001 CACHE IXLDT I$ index load data

00101 CACHE IXSDT I$ index store data

There are four BTAC CACHE sub operations as listed below.

00010 CACHE BXLBT index load BTAC

00110 CACHE BXSBT index store BTAC

01100 CACHE BFH BTAC flush

01010 CACHE BHINBT hit invalidate BTAC

However, there is no problem when Status.KSU==Kernel. Please note that

Status.KSU==Kernel includes the kernel mode at Status.EXL==1 or

Status.ERL==1 as well. There is also no problem when Status.CU[0]==0, and

Status.KSU==User mode or Supervisor mode.

2.3.2 Corrective measures

In Status.CU[0]==1 and Status.KSU==Supervisor or User, execute under

VA[31]==0 when executing either index-type ICACHE or BTAC CACHE

instructions. VA here represents base reg + offset.

Chapter 1 Introduction

1-10

2.4 kuseg becomes an uncached area when an error exception
(Status.ERL = 1) occurs (FLX04)

2.4.1 Phenomenon

There are cases in which kuseg (0x0000_0000 – 0x7FFF_FFFF) becomes

uncached in an error exception handler (Status.ERL==1) and data consistency

with cached area (kseg, ksseg, kseg0) is lost.

2.4.2 Corrective measures

In an error exception handler (Status.ERL==1), when accessing kuseg

(0x0000_0000 – 0x7FFF_FFFF), access it after guarding using SYNC.L as follows:

SYNC.L

SW ku　seg

Chapter 1 Introduction

1-11

2.5 First two instructions in an exception handler are executed as NOP when a
bus error occurs (FLX05)

2.5.1 Phenomenon

There are cases in which the first two instructions in an exception handler are

executed as NOP instructions, when certain exception occurs and then a bus error

occurs immediately before jumping to the exception handler.

2.5.2 Corrective measures

Place NOP in the first two instruction locations in all exception handlers.

Chapter 1 Introduction

1-12

2.6 Unexpected instruction-fetch bus-errors occur when executing a Crashme
program (FLX06)

2.6.1 Phenomenon

In Kernerl mode or Supervisor mode, unexpected Instruction-fetch bus errors

occur when attempting to execute a program called "Crashme" of Linux, since

prohibited instruction-sequences that do not obey the following programming

restrictions are executed.

In User mode, such a phenomenon doesn’t occur.

2.6.2 Corrective measures

In Kernerl mode or Supervisor mode , obey the following programming

restrictions:

1) Any CACHE instruction must not be placed in a branch delay slot.

2) SYNC.P must be located immediately before or immediately after any

CACHE instruction.

Chapter 2 Architecture Overview

2-1

2. Architecture Overview

This chapter includes an overview of the C790 architecture. It discusses the following
items:

• Block diagram and main modules
• Superscalar pipeline operation
• Instruction set
• Registers
• Memory Management
• Cache Memory
• Bus interface
• Floating Point Unit
• Performance Monitors
• Debug Support

Chapter 2 Architecture Overview

2-2

2.1 Block Diagram and Functional Block Descriptions
This section presents a block diagram of the main modules of the C790 and summarizes
the modules.

PC Unit

PC Pipe &
BTAC

 (64-entry
fully assoc.)

BR
 E

xe
cu

tio
n

Pi
pe

I1
 E

xe
cu

tio
n

Pi
pe

I0
 E

xe
cu

tio
n

Pi
pe

C
1

C
O

P1
 (F

PU
) P

ip
e

2.1.1

48 entry TLB

Cop0 Registers

ITLB
2 entries

2.1.2 Instruction Cache (I-Cache)
Tag, BHT, Predecode, Inst RAMs

(32 KB, 2-way set assoc.)

Issue Logical Staging Resigters
(2 Issue In-order)

GPR
(32x128-bit wide registers)

Operand/Bypass Logic

2.1.2

Instruction
Virtual Address

(IVA)
2.1.3

2.1.4

2.1.5

2.1.7

MMU

DTLB
(4 entries)

Virtual Address
Computation Logic

FPR
(32x64-bit wide

registers)

UCAB

2.1.9

Data Cache
(D-Cache)

(32 KB, 2-way
set assoc.)

Data Virtual Address
(DVA)

WBBResponse
Buffer

2.1.8

2.1.10

Bus Interface Unit

2.1.11

Result and Move Buses

TLB Refill Bus

Data
Physical
Address
(DPA)

LS
 E

xe
cu

tio
n

Pi
pe

BIU Bus

I-Cache Output
Pipeline
Control

2.1.5

2.1.6

128b

128b

2.1.3 2.1.2

Instruction
Physical Address

(IPA)

CPU Bus

128b

128b

Figure 2-1. C790 Block Diagram

Chapter 2 Architecture Overview

2-3

2.1.1 PC Unit
The 32-bit Program Counter (PC) holds the address of the instruction which is being
executed. It also contains a 64-entry Branch Target Address CacheBranch Target Address CacheBranch Target Address CacheBranch Target Address Cache (BTAC) which stores
branch target addresses used during branch prediction.

2.1.2 MMU
The Memory Management Unit supports the address translation functions of the CPU. It
supplies the DTLB (Data Translation Lookaside Buffer) and ITLB (Instruction
Translation Lookaside Buffer) with data via the TLB Refill Bus. Usage of these buffers is
described in chapter 6.

2.1.3 Caches
Operation of the Instruction Cache and the Data Cache is described in Chapter 7. For
each branch instruction, present in the instruction cache, two bits of branch history are
stored in the Branch History TableBranch History TableBranch History TableBranch History Table (BHT).

2.1.4 Issue Logic and Staging Registers
The issue logic decides how to route instructions to appropriate pipes. It issues up to 2
instructions every cycle. Routing is described and discussed later in section 2.2.

2.1.5 GPR (General Purpose Registers) and FPR (Floating-Point
Registers)

The General-Purpose Registers and the Floating-Point Registers are discussed in Section
2.3.

2.1.6 The Five Execution Pipes

2.1.6.1 I0 and I1 Pipes
There are two integer ALU pipelines (I0 and I1), each of which contains a complete 64-bit
ALU, Shifter and Multiply-Accumulate unit. The I0 pipeline contains the SA register used
for funnel shift operations. The two 64-bit ALU pipelines can be configured dynamicallyThe two 64-bit ALU pipelines can be configured dynamicallyThe two 64-bit ALU pipelines can be configured dynamicallyThe two 64-bit ALU pipelines can be configured dynamically
(on an instruction-by-instruction basis) into a single 128-bit execution pipeline(on an instruction-by-instruction basis) into a single 128-bit execution pipeline(on an instruction-by-instruction basis) into a single 128-bit execution pipeline(on an instruction-by-instruction basis) into a single 128-bit execution pipeline to to to to
execute 128-bit Multimediaexecute 128-bit Multimediaexecute 128-bit Multimediaexecute 128-bit Multimedia ALU, Shift ALU, Shift ALU, Shift ALU, Shift and Multiply-Accumulate instructions. and Multiply-Accumulate instructions. and Multiply-Accumulate instructions. and Multiply-Accumulate instructions.
Furthermore, the two ALU pipelines share a single 128-bit multimedia aligner.

2.1.6.2 LS - Load/Store Pipe
The Load/Store (LS) pipe contains logic to support a single 128-bit Load and Store
instruction.

2.1.6.3 BR - Branch Pipe
The Branch (BR) pipe contains logic to implement a single Branch instruction including
Branch comparators.

2.1.6.4 C1 - COP1/FPU Pipe
The C1 pipe contains logic to support a single/double Floating Point coprocessor unit
(COP1).

Chapter 2 Architecture Overview

2-4

2.1.7 Operand/Bypass logic
This module takes data from the GPRs and from the Result and Move Buses, and routes
the data to the pipelines.

2.1.8 Response Buffer and Writeback Buffer
The Writeback Buffer (WBB) is an 8 entry by 16 byte (one quadword) FIFO queuing up
stores prior to accessing the CPU bus. It increases C790 performance by decoupling the
processor from the latencies of the CPU bus. It is also used during the gathering operation
of uncached accelerated stores; sequential stores less than a quadword in length are
gathered in the WBB, thereby reducing bus bandwidth usage.

2.1.9 UCAB
The Uncached Accelerated Buffer (UCAB) is a 1 entry by 8 quadword buffer. It caches 128
sequential bytes of data during an uncached accelerated load miss. Subsequent loads from
the uncached accelerated address space get their data from this buffer if the address hits
in the UCAB, thereby eliminating bus latencies and providing higher performance.

2.1.10 Result and Move Buses
The Result and Move Buses convey data between execution units, the data cache, and the
Operand/Bypass Logic unit.

2.1.11 Bus Interface Unit and BIU Bus
The BIU connects the core to the rest of the system. It interfaces the core’s internal bus
signals to the CPU Bus.

Chapter 2 Architecture Overview

2-5

2.2 Superscalar Pipeline Operation
The C790 has a six-stage superscalar pipeline. It can fetch, decode and execute a
maximum of two instructions in parallel each cycle.

This section discusses in more detail the six execution pipelines listed in Section 2.1. It
also discusses how instructions are routed among pipes.

2.2.1 Integer Instruction Pipeline Stages
The C790 contains four integer pipelines: the I0 and the I1 pipes, and the Load/Store and
Branch pipes. Each pipe consists of the following six stages with each stage having 2
phases:

• I: Instruction Address Select
• Q: Instruction Queue
• R: Register Fetch
• A: Execution
• D: Data Fetch
• W: Write-back

Figure 2-2 shows the six stages of an integer instruction pipeline

I Q R A D W
I Q R A D W

I Q R A D W
I Q R A D W

I Q R A D W
I Q R A D W

Current CPU
Cycle

I Q R A D W
I Q R A D W

I Q R A D W
I Q R A D W

I Q R A D W
I Q R A D W

Figure 2-2. C790 Integer Instruction Pipeline

Chapter 2 Architecture Overview

2-6

I: Instruction Address Select
During the I stage, the following occurs:

• The sequential address is calculated
• The branch address is calculated
• The instruction address is selected from the following sources

• Sequential address
• Actual Branch / Jump address
• Predicted Branch Target address from the BTAC
• Exception vector address
• EPC and Error PC

Q: Instruction Queue
During the Q stage, the following occurs:

• The instruction translation look-aside buffer (ITLB) does the virtual-to-physical
address translation

• The instruction cache (data, Tag, steering bits & BHT) fetch begins
• TLB read for instruction fetch starts
• The instruction cache fetch is completed
• TLB read for instruction fetch completes
• The instruction cache Tag hit check is determined and the way selection is

done
• The appropriate instructions are selected by the steering bits

R: Register Fetch
During the R stage the following occurs:

• Instructions are bussed to the appropriate execution units
• Register file is read
• Execution unit structural hazards are determined
• Instructions are decoded, data dependencies are determined and the

appropriate instructions are issued

A: Execution
During the A stage, the following occurs:

• Results from the D or W stages are bypassed
• The execution units start and complete the integer arithmetic, logical, shift and

multimedia instructions
• The iterative steps of the Multiply, Multiply-Accumulate, or Divide instructions

are executed
• The virtual address for load and store instructions is calculated
• The branch condition is determined
• The DTLB is read
• The Data Cache and UCAB read starts

Chapter 2 Architecture Overview

2-7

D: Data Fetch
During the D stage, the following occurs:

• The TLB read for a data access
• The Data Cache and UCAB read is completed
• The Data Cache Tag checking is completed
• Load or register data is obtained from COP1 (FPU)
• COP0 registers are read
• Data alignment and way selection is done for the data from the Data Cache
• Data sign extension is done
• Complete updating BHT bits and the BTAC
• All the exceptions are detected

W: Write Back
During the W stage, the following occurs:

• For store operations data is written to the Data Cache
• Data for coprocessor data transfer instructions is transferred to COP1 (FPU)
• For register-to-register and load instructions, the result is written to the

register file
• COP0, COP1 (FPU) registers are written for coprocessor data transfer

instructions

Chapter 2 Architecture Overview

2-8

2.2.2 C1 (COP1/FPU) Instruction Pipeline Stages
The C790’s C1 (COP1/FPU) pipeline consists of the following eight stages:

• I: Instruction Address Select
• Q: Instruction Queue
• R: Register Fetch
• T: COP1 Register Fetch
• X: FP Execution 1st Stage
• Y: FP Execution 2nd Stage
• Z: FP Execution 3rd Stage
• S: Register File Write Stage

The eight stages of the pipeline for COP1/FPU are shown in Figure 2-3 with some pipeline
stages identified with two letters. COP1 instructions execute simultaneously in the main
integer pipeline I0 and the coprocessor 1 pipeline. The first letter identifies the main
integer pipeline stage and the second letter identifies the coprocessor pipeline stage.

I Q R A/T D/X W/Y Z S
I Q R A/T D/X W/Y S

I Q R A/T D/X W/Y Z S
I Q R A/T D/X W/Y Z S

I Q R A/T D/X W/Y Z S
I Q R A/T D/X W/Y Z S

I Q R A/T D/X W/Y Z S
I Q R A/T D/X W/Y Z S

Z

Current CPU Cycle

Figure 2-3. FPU Pipeline

The I, Q, and R stages were previously described in Section 2.2.1. The following describes
stages specific to the COP1 pipeline:

T: COP1 Register Fetch

During the T stage, the following occurs:

• Register file read for operands
• Bypass muxes from the S Stage/W Stage for S/T overlap.

Chapter 2 Architecture Overview

2-9

X: FP Execution 1st Stage

This stage is the first step for floating point operations.

During the X stage, the following occurs:

• Detect Exceptions for input data.
• Detect Exception possibilities for result.
• The Booth function/Wallace multiplication is performed for multiply, the de-

nor-malization is performed for add/subtract.

Y: FP Execution 2nd Stage

This stage is the second step for floating point operations. The following occurs:

• Test overflow/underflow on exponent is done
• Normalization for multiplication is done.
• Add/subtract the significand for add/subtract operations.
• Count leading zeros, to determine the shift amount for the normalization

Z: FP Execution 3rd Stage

This stage is the third step for floating point operations. The following occurs:

• Overflow/underflow detection
• Exponent readjustment
• Shift the significand for normalization
• Round the result
• Detect inexact exception

S: Register File Write Stage

During the S stage, the following occurs:

• FPR registers are written.
• FCSR31 is updated.
• Bypass values are passed to the T stage.

Chapter 2 Architecture Overview

2-10

2.2.3 Classification and Routing of Instructions According to
Execution Pipelines

This section discusses how the five execution pipelines are used in conjunction with
instruction routing. Figure 2-4 identifies the specific execution pipelines into which
instructions of a particular class are routed, and shows which physical execution units
handle instructions from a particular logical pipe. Instruction categories are identified in
italics, and are shown within the physical pipes where they are executed. ALU
instructions can be executed in either integer pipe I0 or I1. COP1 Operate, and COP1
Move instructions execute in two pipes as shown, as does the Wide Operate.

C1 MoveC1 Compute

Logical Pipe0

I0 pipe

ALU
SA Operate

MAC0

I1 pipe

ALU
SYNC
ERET
COP0
MAC1

LS pipe

Load/
Store

Prefetch
CACHE

BR pipe

Branch

COP1 Move

COP1 Operate

Logical Pipe1

Ph
ys

ic
al

 P
ip

es

Wide Operate

Figure 2-4. Instruction Routing in Logical Pipes and Physical Pipes

Chapter 2 Architecture Overview

2-11

Table 2-1 shows the categories of instructions and the execution pipelines that can execute
those instructions. The instructions in a single category have the same issuing policy.
Instructions which require more than a single execution pipeline are identified in the
pipeline column with the (✔ &) symbol. For example, COP1 Move requires both the LS
and the C1 execution pipelines. On the other hand, the ALU instructions can be executed
in either the I0 or the I1 execution pipelines.

Table 2-1. Categories of Instructions and How They Are Routed

Categories Execution Pipeline Instructions
 I0 I1 LS BR C1

Load/Store ✔ Load, Store, Wide Load , Wide
Store, Prefetch, CACHE

SYNC ✔ Synchronization
ERET ✔ Exception return
SA Operate ✔ Move to/from to SA register
COP0 ✔ COP0 Coprocessor move,

COP0 Coprocessor operations
COP1 Move1 ✔ & ✔ COP1 Coprocessor move,

COP1 Coprocessor Load/Store
COP1 Operate2

✔ & ✔ COP1 Operate Instructions
ALU3 ✔ ✔ Arithmetic, Shift, Logical, Trap,

SYSCALL, BREAK
MAC0 ✔ Multiply and Multiply

-Accumulate for HI/LO
register, MFHI/LO, MTHI/LO

MAC1 ✔ Multiply and Multiply-
Accumulate for HI1/LO1
register, MFHI1/LO1,
MTHI1/LO1

Branch ✔ Branch, Jump, Jump/Link, All
Coprocessor Branches

Wide Operate4 ✔ ✔ & Wide ALU, Wide shift, Wide
MAC, Funnel shift, Wide HI/LO
Moves

1 COP1 Move instructions execute concurrently in the LS and the C1 pipes.
2 COP1 Operate instructions execute concurrently in the I0 and the C1 pipes.
3 ALU instructions can be executed in either the I0 or the I1 pipes.
4 Wide Operate instructions execute concurrently in the I0 and the I1 pipes.

Chapter 2 Architecture Overview

2-12

2.2.4 Instruction Issue Combinations
The C790 always fetches two instructions. A pair of staging registers acts as a ‘bellows’
between the Q and the R stage. If an instruction can’t be issued in a particular cycle, it is
saved in the staging registers. In the next cycle the C790 again fetches two instructions
and tries to issue two (the one left over in the staging register from the previous cycle and
the next sequential one from the pair that is fetched). So the C790 always tries to issue
two instructions each cycle whenever it can.

The two instructions that get issued go to the R-stage of the pipeline and get associated
with one of two logical pipes: Pipe0 and Pipe1. The instructions are then routed to an
appropriate physical pipe for processing.

 Instruction categories that can get issued to logical Pipe0 are:

1. ALU
2. Branch
3. Wide Operate
4. SA Operate
5. MAC0
6. COP1 Operate

An alternate way to view this is to recognize that logical Pipe0 is made up of the I0, C1
and BR execution pipelines. When issuing Wide Operate instructions logical Pipe0 also
uses the I1 execution pipeline.

Instruction categories that can get issued to logical Pipe1 are:

1. ALU
2. Branch
3. SYNC
4. ERET
5. Load/Store
6. COP1 Move
7. COP0
8. MAC1

An alternate way to view this is to recognize that logical Pipe1 is made up of the I1, LS,
C1 and BR execution pipelines.

All instruction categories are statically bound to a single logical pipe, that is, they can only
be issued to a particular logical pipe. However the ALU and Branch instruction categories
can get issued to either of the two logical pipes. Thus the binding of these two instruction
categories to a particular logical pipe is done at instruction issue time.

There are some special cases of instruction sequences that are not allowed in the MIPS
ISA. An instruction from the Branch category is not allowed to have another instruction
from either the Branch or ERET category in its branch delay slot. So the following pairs of
instructions are illegal and effectively never issued together:

1. Branch - Branch
2. Branch - ERET

Chapter 2 Architecture Overview

2-13

The following sequences of instructions are also not allowed in the C790. Branch-Likely
instructions are a subset of the Branch category (limited to the branch likely instructions).

1. Branch - SYNC.P
2. Branch - SYNC.L
3. Branch - CACHE *1
4. Branch-Likely - MTSA
5. Branch-Likely - MTSAB
6. Branch-Likely - MTSAH
7. Branch-Likely - TLBR *2
8. Branch-Likely - TLBWI *2
9. Branch-Likely - TLBWR *2

*1 CACHE instruction must be guarded by Sync instructions.
Sync.P Sync.L
CACHE I$ or CACHE D$
Sync.P Sync.L

*2 TLBR, TLBWI, TLBWR instructions must be followed by Sync.P
TLBxx
Sync.P

The following table shows the instruction categories which can be issued concurrently to
the two logical pipes. All combinations are legal except the ones marked with an “X”. The
combinations marked with a “Y” can be issued concurrently, i.e., enter the R stage
together but then the younger instruction stalls in the A stage for a single cycle in order to
avoid a resource hazard.

Table 2-2. Concurrently Issued Instruction Categories

LOGICAL PIPE0
SA
Oper.

COP1
Oper.

ALU MAC0 Branch Wide
Oper.

Load/Store
ERET X

SYNC
LZC Y

COP1 Move
ALU Y

MAC1 Y

Branch X

LO
G

IC
AL

 P
IP

E1

COP0

X: illegal combination
Y: Can be issued concurrently but it will stall due to structure hazard.

Chapter 2 Architecture Overview

2-14

2.3 Registers
The C790 extends the normal MIPS compatible register set by extending the generalgeneralgeneralgeneral
purpose registerspurpose registerspurpose registerspurpose registers (GPRGPRGPRGPRs) from 64-bits to 128-bits, adding an additional pair of HI/LO
registers for the I1 pipe and adding the SA register for the funnel shift instruction.

2.3.1 CPU Registers
The C790 has 128-bit wide GPRs. The upper 64 bits of the GPRs are only used by the
C790-specific “Quad Load/Store”, and “Multimedia (Parallel)” instructions.

The HI1 and LO1, which are the upper 64 bits of each of the 128-bit HI and LO registers,
are also used by new multiply and divide instructions, such as MULT1, MULTU1, DIV1,
DIVU1, MADD1, MADDU1, MFHI1, MFLO1, MTHI1, and MTLO1, which are non-
parallel I1 pipeline-specific instructions.
The SA register contains the shift amount used by the 256 bit funnel shift instruction.

2.3.2 FPU Registers
The floating point unit (COP1) has 64-bit wide floating point registers. It also contains 2
floating point control registers .

Chapter 2 Architecture Overview

2-15

2.3.3 COP0 Registers
Table 2-3 identifies the COP0 registers of the C790.

Table 2-3. Coprocessor 0 Registers

Register
No.

Register
Name

Description Purpose

0 Index Programmable register to select TLB entry for reading or
writing MMU

1 Random Pseudo-random counter for TLB replacement MMU

2 EntryLo0 Low half of TLB entry for even PFN (Physical page number) MMU

3 EntryLo1 Low half of TLB entry for odd PFN (Physical page number) MMU

4 Context Pointer to kernel virtual PTE table Exception

5 PageMask Mask that sets the TLB page size MMU

6 Wired Number of wired TLB entries MMU

7 (Reserved) Undefined Undefined

8 BadVAddr Bad virtual address Exception

9 Count Timer compare Exception

10 EntryHi High half of TLB entry(Virtual page number and ASID) MMU

11 Compare Timer compare Exception

12 Status Processor Status Register Exception

13 Cause Cause of the last exception taken Exception

14 EPC Exception Program Counter Exception

15 PRId Processor Revision Identifier MMU

16 Config Configuration Register MMU

17 (Reserved) Undefined Undefined

18 (Reserved) Undefined Undefined

19 (Reserved) Undefined Undefined

20 (Reserved) Undefined Undefined

21 (Reserved) Undefined Undefined

22 (Reserved) Undefined Undefined

23 BadPAddr Bad Physical Address Exception

24 Debug This is used for Debug function Debug

25 Perf Performance Counter and Control Register Exception

26 (Reserved) Undefined Undefined

27 (Reserved) Undefined Undefined

28 TagLo Cache Tag register(low bits) MMU

29 TagHi Cache Tag register(high bits) MMU

30 ErrorPC Error Exception Program Counter Exception

31 (Reserved) Undefined Undefined

Chapter 2 Architecture Overview

2-16

2.4 Memory Management
The C790 processor provides a memory management unit (MMU) which uses an on-chip
translation look-aside buffer (TLB) to translate virtual addresses into physical addresses.

The C790 supports the MIPS compatible 32-bit address and 64-bit data mode. Only 32-bit
virtual and physical addresses have been implemented. There is no requirement for
address sign extension. Address error exception checking will not be done on the “upper”
32-bits (which are ignored). The only condition that will generate the address error
exception will be address alignment errors and segment protection errors. In Kernel mode,
it is free from address error exception for program counter to wrap-around from kseg3 to
kuseg.

Since there is only one addressing mode, all the four MIPS ISAs (I, II, III, IV) and the
C790 specific ISA are available without any restrictions in all of the three processor modes
(with the appropriate MIPS ISA coprocessor usable restrictions). As such the reserved
instruction (RI) exception will occur only when the processor really tries to execute an
undefined opcode.

FeaturesFeaturesFeaturesFeatures

• MIPS III-compatible 32-bit MMU
• Operating Modes: User, Supervisor, and Kernel
• TLB: 48 entries of even/odd page pairs (96 pages)

Fully associative
• Page Size: 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB
• ITLB: 2 entries
• DTLB: 4 entries
• Address Sizes: Virtual Address Size = 32 bit, 2 Gbyte per user Process

Physical Address Size = 32 bit, 4 Gbyte

Chapter 2 Architecture Overview

2-17

2.5 Cache Memory
The C790 core contains both an instruction cache and a separate data cache.

FeaturesFeaturesFeaturesFeatures

The following are the main features of the caches:

• Separate Instruction Cache and Data Cache
• Virtually indexed and physically tagged caches
• Write-back policy for the Data Cache
• Data Cache and Instruction Cache burst read sequential ordering
• Cache Size: Instruction Cache: 32 KB
 Data Cache: 32 KB
• Line Size: 64 Bytes
• Refill size: 64 Bytes
• Associativity: 2-way set-associative
• Write Policy: Write-back and write allocate
• Data order for block reads: Sequential ordering
• Data order for block writes: Sequential ordering
• Instruction cache miss restart: After all data received
• Data cache miss restart: Early restart on first quadword
• Cache parity: No
• Cache Locking: Data Cache Line Lock.

Controlled by CACHE instruction
• Cache Snooping: No
• Non-blocking load: Yes
• Hit Under Miss: Yes (Multiple hits under one miss are supported)
• Data Cache Prefetch: Yes

Chapter 2 Architecture Overview

2-18

2.6 Bus Interface
The C790 CPU core is connected to the rest of the system, and to external devices, through
the group of on-chip C790 system bus signals called the CPU Bus.

FeaturesFeaturesFeaturesFeatures
• Separate data and address buses (Demultiplexed operation)
• 128-bit data bus
• Clocked synchronous operations
• Peak transfer rate of 2.1 GB/sec (@133 MHz bus clock)
• 8/16/32/64/128-bit and burst accesses
• Multimaster capability
• Pipelined operations
• No turn-around or dead cycles between transfers

The CPU Bus does not provide:
• Cache coherency support
• Split transactions

2.7 Floating Point Unit
The floating point unit is IEEE754-1985 compatible as same as FPU in the TX49HF CPU
core.

Main FeaturesMain FeaturesMain FeaturesMain Features:

• Tightly coupled to the C790 Integer pipeline.
• Supports both double and single precision format as defined in IEEE-754

specification
• No hardware support for Denormalized number in the IEEE-754 specification.

Software (exception handler) supports it.
• The FPU supports five IEEE exceptions and one MIPS defined exception.
• ADD, SUB, MUL, DIV, ABS, MOV, NEG, SQRT, compare and convert are

supported

Chapter 2 Architecture Overview

2-19

2.8 Performance Counter
The performance counter provides the means for gathering statistical information about
the internal events of the CPU and the pipeline during program execution. The statistics
gathered during program execution aid in tuning the performance of hardware and
software systems based on the processor.

The performance counter consists of one control register and two counters. The control
register controls the functions of the performance counter while the counters count the
number of events specified by the control register.

Features:Features:Features:Features:

• Two performance counter registers
• Over twenty different events within the processor can be counted
• Counting can be selectively enabled in User, Supervisor, Kernel, and Exception

modes

2.9 Debug and Tracing Functions
The C790 supports real-time PC tracing. Pipeline status, target addresses of indirect
jumps, and exception vectors are made available on special signals. The executed
instruction sequence can be restored from signals and the source program.

Features:Features:Features:Features:

• One Instruction Address Breakpoint register
• One Instruction Address Breakpoint Mask register
• One Data Address Breakpoint register
• One Data Address Breakpoint Mask register
• One Data Value Breakpoint register
• One Data Value Breakpoint Mask register
• Each breakpoint individually enabled
• Breakpoint function can be selectively enabled in User, Supervisor, Kernel, and

Exception modes
• External Trigger signal can be generated when breakpoint occurs
• 11 signals used to provide real-time PC tracing function

Chapter 2 Architecture Overview

2-20

Chapter 3 Instruction Set Overview and Summary

3-1

3. Instruction Set Overview and Summary

This chapter provides an overview of the C790 instruction set. Refer to Appendices A - D
for detailed descriptions of individual instructions.

Chapter 3 Instruction Set Overview and Summary

3-2

3.1 Introduction
The C790 supports all MIPS III instructions with the exception of 64-bit multiply, 64-bit
divide, Load Linked and Store Conditional instructions. It also supports a limited number
of MIPS IV instructions and additional C790-specific instructions, such as Multiply/Add
instructions and multimedia instructions.

The instruction set can be divided into the following groups:
• Load and Store
• Computational
• Jump and Branch
• Miscellaneous
• System Control Coprocessor (COP0)
• Coprocessor 1 (COP1)
• C790-specific

Chapter 3 Instruction Set Overview and Summary

3-3

3.2 CPU Instruction Set Formats
There are three instruction formats: immediateimmediateimmediateimmediate (I-type), jumpjumpjumpjump (J-type), and registerregisterregisterregister (R-
type), as shown in Figure 3-1. The use of a small number of instruction formats simplifies
instruction decoding (thus producing higher frequency operations) and allows the compiler
to synthesize more complicated (and less frequently used) operations and address modes
from these three formats as needed.

R-type (Register)

J-type (Jump)

op rs rt immediate
31 26 25 21 20 16 15 0

op target
31 26 25 0

op rs rt rd sa funct
31 26 25 21 20 16 15 11 10 6 5 0

I-type (Immediate)

op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition
immediate 16-bit immediate value, branch displacement or address displacement
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

Figure 3-1. CPU Instruction Formats

Chapter 3 Instruction Set Overview and Summary

3-4

3.3 Instruction Set Summary
The C790 supports MIPS III instructions1 as well as a limited number of MIPS IV
instructions. A large number of C790-specific instructions, such as multiply/add
instructions and multimedia instructions have also been implemented.

3.3.1 Load/Store Instructions
The instructions in this group transfer data of different sizes: bytes, halfwords, words,
doublewords and quadwords. Signed and unsigned integers of different sizes are
supported by loads that either sign-extended or zero-extended the data loaded into the
register.

Load and store instructions are immediate (I-type) instructions that move data between
memory and the general registers. The only addressing mode that load and store
instructions directly support is base register plus 16-bit signed immediate offset.

3.3.1.1 Normal Loads and Stores

The C790 does not support Load Linked and Store Conditional instructions, LL, LLD, SC
and SCD. For details of these instructions refer to Appendix A.

Table 3-1. Load / Store Instructions

Mnemonic Description Defined in
LB Load Byte MIPS I
LBU Load Byte Unsigned MIPS I
LD Load Doubleword MIPS III
LDL Load Doubleword Left MIPS III
LDR Load Doubleword Right MIPS III
LH Load Halfword MIPS I
LHU Load Halfword Unsigned MIPS I
LW Load Word MIPS I
LWL Load Word Left MIPS I
LWR Load Word Right MIPS I
LWU Load Word Unsigned MIPS III
SB Store Byte MIPS I
SD Store Doubleword MIPS III
SDL Store Doubleword Left MIPS III
SDR Store Doubleword Right MIPS III
SH Store Halfword MIPS I
SW Store Word MIPS I
SWL Store Word Left MIPS I
SWR Store Word Right MIPS I

1 Note: The C790 does not support the following MIPS III instructions:

64-bit multiply and divide instructions (DMULT, DMULTU, DDIV, DDIVU)
Semaphore instructions (LL, LLD, SC, SCD)

Chapter 3 Instruction Set Overview and Summary

3-5

3.3.1.2 Multimedia Loads and Stores

The C790 implements 128-bit (quadword) load and store instructions for multimedia
purpose. For details of these instructions refer to Appendix B.

Table 3-2. Multimedia Load / Store Instructions

Mnemonic Description Defined in
LQ Load Quadword C790
SQ Store Quadword C790

3.3.1.3 Coprocessor Loads and Stores

These loads and stores are coprocessor instructions. A particular coprocessor is enabled if
corresponding CU bit is set in CP0 Status register. Otherwise executing one of these
instructions generates a Coprocessor Unusable exception. For details of these instructions
refer to Appendices C and D.

Table 3-3. Coprocessor Load / Store Instructions

Mnemonic Description Defined in
LDC1 Load Doubleword to Floating

Point
MIPS II

LWC1 Load Word to Floating Point MIPS I
SDC1 Store Doubleword from Floating

Point
MIPS II

SWC1 Store Word from Floating Point MIPS I

3.3.1.4 Data Formats and Addressing

The C790 processor uses five data formats:

• 128-bit quadword
• 64-bit doubleword
• 32-bit word
• 16-bit halfword
• 8-bit byte

Byte ordering within each of the larger data formats — halfword, word, doubleword — can
be configured in either big-endian or little-endian order. Endianness refers to the location
of byte 0 within the multi-byte data structure. Figure 3-2 and Figure 3-3 show the
ordering of bytes within words and the ordering of words within multiple-word structures
for the big-endian and little-endian conventions.

When the C790 processor is configured as a big-endian system, byte 0 is the most-
significant (leftmost) byte, thereby providing compatibility with MC 68000® and IBM 370®

conventions. Figure 3-2 shows this configuration.

Chapter 3 Instruction Set Overview and Summary

3-6

Word
Address

12
8
4
0

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0
12
8
4
0

13
9
5
1

14
10
6
2

15
11
7
3

Bit #

Figure 3-2. Big-Endian Byte Ordering

When configured as a little-endian system, byte 0 is always the least-significant
(rightmost) byte, which is compatible with iAPX® x86 and DEC VAX® conventions.

Word
Address

12
8
4
0

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0
12
8
4
0

13
9
5
1

14
10
6
2

15
11
7
3

Bit #

Figure 3-3. Little-Endian Byte Ordering

In this text, bit 0 is always the least-significant (rightmost) bit: thus, bit designations are
always little-endian (although no instructions explicitly designate bit positions within
words).

Chapter 3 Instruction Set Overview and Summary

3-7

Figure 3-4 and Figure 3-5 show little-endian and big-endian byte ordering in doublewords.

Most-significant byte Least-significant byte
Least significant Word

Bit # 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Halfword Byte

7 6 5 4 3 2 1 0

Bits in a Byte

Bit # 7 6 5 4 3 2 1 0

Byte #

Figure 3-4. Little-Endian Data in a Doubleword

Most-significant byte Least-significant byte
Least significant Word

Bit # 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Halfword Byte

0 1 2 3 4 5 6 7

Bits in a Byte

Bit # 7 6 5 4 3 2 1 0

Byte #

Figure 3-5. Big-Endian Data in a Doubleword

Chapter 3 Instruction Set Overview and Summary

3-8

The CPU uses byte addressing for halfword, word, doubleword, and quadwordquadwordquadwordquadword accesses
with the following alignment constraints:

• Halfword accesses must be aligned on an even byte boundary (0, 2, 4...).
• Word accesses must be aligned on a byte boundary divisible by four (0, 4, 8...).
• Doubleword accesses must be aligned on a byte boundary divisible by eight (0, 8,

16...).
• Quadword accesses must be aligned on a byte boundary divisible by sixteen (0,

16, 32...).

The following special instructions load and store words that are not aligned on 4-byte
(word), 8-byte (doubleword), boundaries:

LWL LWR SWL SWR

LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of misaligned words.
Addressing misaligned data incurs one additional instruction cycle over that required for
addressing aligned data. This extra cycle is because of an extra instruction for the “pair”
(e.g.,LWL and LWR form a pair). Also note that the CPU moves the unaligned data at the
same rate as a hardware mechanism.

Figure 3-6 and Figure 3-7 shows the access of a misaligned word that has byte address 3.

3
654

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0

Bit #

Figure 3-6. Big-Endian Misaligned Word Addressing

3
6 5 4

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0

Bit #

Figure 3-7. Little-Endian Misaligned Word Addressing

Chapter 3 Instruction Set Overview and Summary

3-9

3.3.1.5 Defining Access Types

Access type indicates the size of the C790 processor data item to be loaded or stored, set
by the load or store instruction opcode.

Regardless of access type or byte ordering (endianess), the address given specifies the low-
order byte in the addressed field. For a big-endian configuration, the low-order byte is the
most-significant byte; for a little-endian configuration, the low-order byte is the least-
significant byte.

The access type, together with the four low-order bits of the address, defines the bytes
accessed within the addressed doubleword (shown in Table 3-4 and Table 3-5). Only the
combinations shown in Table 3-4 and Table 3-5 are permissible; other combinations cause
address error exceptions.

Chapter 3 Instruction Set Overview and Summary

3-10

Table 3-4. Defining Access Types (Big-Endian)

Access Type Low-Order Bytes Accessed
Mnemonic Address

Bits
3 2 1 0

Big endian
(127---------------95----------------63-----------------31-----------------0)

Byte
Quadword 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Doubleword 0 0 0 0 0 1 2 3 4 5 6 7

1 0 0 0 8 9 10 11 12 13 14 15
Septibyte 0 0 0 0 0 1 2 3 4 5 6

0 0 0 1 1 2 3 4 5 6 7
1 0 0 0 8 9 10 11 12 13 14
1 0 0 1 9 10 11 12 13 14 15

Sextibyte 0 0 0 0 0 1 2 3 4 5
0 0 1 0 2 3 4 5 6 7
1 0 0 0 8 9 10 11 12 13
1 0 1 0 10 11 12 13 14 15

Quintibyte 0 0 0 0 0 1 2 3 4
0 0 1 1 3 4 5 6 7
1 0 0 0 8 9 10 11 12
1 0 1 1 11 12 13 14 15

Word 0 0 0 0 0 1 2 3
0 1 0 0 4 5 6 7
1 0 0 0 8 9 10 11
1 1 0 0 12 13 14 15

Triplebyte 0 0 0 0 0 1 2
0 0 0 1 1 2 3
0 1 0 0 4 5 6
0 1 0 1 5 6 7
1 0 0 0 8 9 10
1 0 0 1 9 10 11
1 1 0 0 12 13 14
1 1 0 1 13 14 15

Halfword 0 0 0 0 0 1
0 0 1 0 2 3
0 1 0 0 4 5
0 1 1 0 6 7
1 0 0 0 8 9
1 0 1 0 10 11
1 1 0 0 12 13
1 1 1 0 14 15

Chapter 3 Instruction Set Overview and Summary

3-11

Access Type Low-Order Bytes Accessed
Mnemonic Address

Bits
3 2 1 0

Big endian
(127---------------95----------------63-----------------31-----------------0)

Byte
Byte 0 0 0 0 0

0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

Chapter 3 Instruction Set Overview and Summary

3-12

Table 3-5. Defining Access Types (Little-Endian)

Access Type Low-Order Bytes Accessed
Mnemonic Address

Bits
3 2 1 0

Little endian
(127---------------95----------------63-----------------31-----------------0)

Byte
Quadword 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Doubleword 0 0 0 0 7 6 5 4 3 2 1 0

1 0 0 0 15 14 13 12 11 10 9 8
Septibyte 0 0 0 0 6 5 4 3 2 1 0

0 0 0 1 7 6 5 4 3 2 1
1 0 0 0 14 13 12 11 10 9 8
1 0 0 1 15 14 13 12 11 10 9

Sextibyte 0 0 0 0 5 4 3 2 1 0
0 0 1 0 7 6 5 4 3 2
1 0 0 0 13 12 11 10 9 8
1 0 1 0 15 14 13 12 11 10

Quintibyte 0 0 0 0 4 3 2 1 0
0 0 1 1 7 6 5 4 3
1 0 0 0 12 11 10 9 8
1 0 1 1 15 14 13 12 11

Word 0 0 0 0 3 2 1 0
0 1 0 0 7 6 5 4
1 0 0 0 11 10 9 8
1 1 0 0 15 14 13 12

Triplebyte 0 0 0 0 2 1 0
0 0 0 1 3 2 1
0 1 0 0 6 5 4
0 1 0 1 7 6 5
1 0 0 0 10 9 8
1 0 0 1 11 10 9
1 1 0 0 14 13 12
1 1 0 1 15 14 13

Halfword 0 0 0 0 1 0
0 0 1 0 3 2
0 1 0 0 5 4
0 1 1 0 7 6
1 0 0 0 9 8
1 0 1 0 11 10
1 1 0 0 13 12
1 1 1 0 15 14

Chapter 3 Instruction Set Overview and Summary

3-13

3.3.1.6 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately
following is called a delayed load instruction. The instruction slot immediately following
this delayed load instruction is referred to as the load delay slot.

In the C790 processor, the instruction immediately following a load instruction can use
the contents of the loaded register. In such cases, however, hardware interlocks insert
additional clock cycles. Consequently, scheduling load delay slots can be desirable, both
for performance and R-Series processor compatibility. However, the scheduling of load
delay slots is not absolutely required.

Access Type Low-Order Bytes Accessed
Mnemonic Address

Bits
3 2 1 0

Little endian
(127---------------95----------------63-----------------31-----------------0)

Byte
Byte 0 0 0 0 0

0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

Chapter 3 Instruction Set Overview and Summary

3-14

3.3.2 Computational Instructions
The instructions in this group perform two’s complement arithmetic, logical operations, or
shifts on integers represented in two’s complement notation.

Computational instructions can be either in register (R-type) format, in which both
operands are registers, or in immediate (I-type) format, in which one operand is a 16-bit
immediate.

Computational instructions perform the following operations on register values:

• Arithmetic
• Logical
• Shift
• Multiply
• Divide

These operations fit in the following four categories of computational instructions:

• ALU immediate instructions
• Three-Operand Register-Type instructions
• Shift instructions
• Multiply and Divide instructions

For detailed information of individual instructions, refer to Appendix A.

*Note: The C790 does not support 64-bit Multiply and Divide instructions, DMULT, DMULTU,
DDIV, and DDIVU.

3.3.2.1 ALU Immediate Instructions

Table 3-6. ALU Immediate Instructions

Mnemonic Description Defined in
ADDI Add Immediate MIPS I
ADDIU Add Immediate Unsigned MIPS I
SLTI Set on Less Than Immediate MIPS I
SLTIU Set on Less Than Immediate Unsigned MIPS I
ANDI AND Immediate MIPS I
ORI OR Immediate MIPS I
XORI Exclusive OR Immediate MIPS I
LUI Load Upper Immediate MIPS I
DADDI Doubleword Add Immediate MIPS III
DADDIU Doubleword Add Immediate Unsigned MIPS III

Chapter 3 Instruction Set Overview and Summary

3-15

3.3.2.2 Three Operand Register-Type Instructions

Table 3-7. Three Operand Register-Type Instructions

Mnemonic Description Defined in
ADD Add MIPS I
ADDU Add Unsigned MIPS I
SUB Subtract MIPS I
SUBU Subtract Unsigned MIPS I
DADD Doubleword Add MIPS III
DADDU Doubleword Add Unsigned MIPS III
DSUB Doubleword Subtract MIPS III
DSUBU Doubleword Subtract Unsigned MIPS III
SLT Set Less Than MIPS I
SLTU Set Less Than Unsigned MIPS I
AND AND MIPS I
OR OR MIPS I
XOR Exclusive OR MIPS I
NOR NOR MIPS I

3.3.2.3 Shift Instructions

Table 3-8. Shift Instructions

Mnemonic Description Defined in
SLL Shift Left Logical MIPS I
SRL Shift Right Logical MIPS I
SRA Shift Right Arithmetic MIPS I
SLLV Shift Left Logical Variable MIPS I
SRLV Shift Right Logical Variable MIPS I
SRAV Shift Right Arithmetic Variable MIPS I
DSLL Doubleword Shift Left Logical MIPS III
DSRL Doubleword Shift Right Logical MIPS III
DSRA Doubleword Shift Right Arithmetic MIPS III
DSLL32 Doubleword Shift Left Logical + 32 MIPS III
DSRL32 Doubleword Shift Right Logical + 32 MIPS III
DSRA32 Doubleword Shift Right Arithmetic + 32 MIPS III
DSLLV Doubleword Shift Left Logical Variable MIPS III
DSRLV Doubleword Shift Right Logical Variable MIPS III
DSRAV Doubleword Shift Right Arithmetic Variable MIPS III

3.3.2.4 Multiply and Divide Instructions

These are the standard MIPS instructions for multiply, divide, and move to / from HI / LO
registers executed on the I0 pipeline’s MAC unit. See also C790-specific Multiply and
Divide instructions discussion.

Table 3-9. Multiply and Divide Instructions

Mnemonic Description Defined in
MULT Multiply MIPS I
MULTU Multiply Unsigned MIPS I
DIV Divide MIPS I
DIVU Divide Unsigned MIPS I
MFHI Move From HI MIPS I
MTHI Move To HI MIPS I
MFLO Move From LO MIPS I
MTLO Move To LO MIPS I

3.3.2.5 64-Bit Operations

The result of operations that use incorrect sign-extended 32-bit values for 64-bit
operations is unpredictable.

Chapter 3 Instruction Set Overview and Summary

3-16

3.3.3 Jump and Branch Instructions
The architecture defines PC-relative conditional branches, a PC-region unconditional
jump, an absolute (register) unconditional jump, and a similar set of procedure calls that
record a return link address in a general register. For convenience, these are all referred
to here as branches.

All branches have an architectural delay of one instruction. When a branch is taken, the
instruction immediately following the branch instruction, in the branch delay slot, is
executed before the branch to the target instruction takes place. Conditional branches
come in two versions that treat the instruction in the delay slot differently when the
branch is not taken and execution falls through. The ‘branch’ instructions execute the
instruction in the delay slot, but the ‘branch likely’ instructions do not. (They are said to
‘nullify’ it.)

By convention, if an exception or interrupt prevents the completion of an instruction
occupying a branch delay slot, the instruction stream is continued by re-executing the
branch instruction. To permit this, branches must be restartable; procedure calls may not
use the register in which the return link is stored (usually register 31) to determine the
branch target address.

For detailed information of individual instructions, refer to Appendix A. Branch on
Coprocessor instructions are covered under coprocessor’s discussions.

3.3.3.1 Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and
Link instructions, both of which are J-type instructions. In J-type format, the 26-bit target
address shifts 2 bits and combines with the high-order 4-bits of the current program
counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump
Register or Jump and Link Register instructions. Both are R-type instructions that take
the 32-bit byte address contained in one of the general purpose registers.

Table 3-10. Jump Instructions Jumping Within a 256 MByte Region

Mnemonic Description Defined in
J Jump MIPS I
JAL Jump and Link MIPS I

Table 3-11. Jump Instructions to Absolute Address

Mnemonic Description Defined in
JR Jump Register MIPS I
JALR Jump and Link Register MIPS I

Chapter 3 Instruction Set Overview and Summary

3-17

3.3.3.2 Branch Instructions

All branch instruction target addresses are computed by adding the address of the
instruction in the branch delay slot to the 16-bit offset (shifts left 2 bits and is sign-
extended to 32-bits). All branches occur with a delay of one instruction.

In case of a Branch Likely instruction, if a condition is not taken, the instruction in the
delay slot is nullified.

Table 3-12. PC-Relative Conditional Branch Instructions Comparing 2 Registers

Mnemonic Description Defined in
BEQ Branch on Equal MIPS I
BNE Branch on Not Equal MIPS I
BLEZ Branch on Less Than or Equal to Zero MIPS I
BGTZ Branch on Greater Than Zero MIPS I
BEQL Branch on Equal Likely MIPS II
BNEL Branch on Not Equal Likely MIPS II
BLEZL Branch on Less Than or Equal to Zero Likely MIPS II
BGTZL Branch on Greater Than Zero Likely MIPS II

Table 3-13. PC-Relative Conditional Branch Instructions Comparing Against Zero

Mnemonic Description Defined in
BLTZ Branch on Less Than Zero MIPS I
BGEZ Branch on Greater Than or Equal to Zero MIPS I
BLTZAL Branch on Less Than Zero and Link MIPS I
BGEZAL Branch on Greater Than or Equal to Zero and

Link
MIPS I

BLTZL Branch on Less Than Zero Likely MIPS II
BGEZL Branch on Greater Than or Equal to Zero Likely MIPS II
BLTZALL Branch on Less Than Zero and Link Likely MIPS II
BGEZALL Branch on Greater Than or Equal to Zero and

Link Likely
MIPS II

Chapter 3 Instruction Set Overview and Summary

3-18

3.3.4 Miscellaneous Instructions

3.3.4.1 Exception Instructions

Exception instructions have as their sole purpose causing an exception that will transfer
control to a software exception handler in the kernel. System call and breakpoint
instructions cause exceptions unconditionally. The trap instructions cause exceptions
conditionally based upon the result of a comparison. For detail of these instructions, refer
to the individual instruction as described in Appendix A.

Table 3-14. Exception Instructions

Mnemonic Description Defined in
BREAK Breakpoint MIPS I
SYSCALL System Call MIPS I
TGE Trap if Greater or Equal MIPS II
TGEU Trap if Greater or Equal Unsigned MIPS II
TLT Trap if Less Than MIPS II
TLTU Trap if Less Than Unsigned MIPS II
TEQ Trap if Equal MIPS II
TNE Trap if Not Equal MIPS II
TGEI Trap if Greater or Equal Immediate MIPS II
TGEIU Trap if Greater or Equal Immediate Unsigned MIPS II
TLTI Trap if Less Than Immediate MIPS II
TLTIU Trap if Less Than Immediate Unsigned MIPS II
TEQI Trap if Equal Immediate MIPS II
TNEI Trap if Not Equal Immediate MIPS II

3.3.4.2 Serialization Instructions

The order in which memory accesses from load and store instructions appear outside the
C790 is not specified by the architecture. The SYNC (or SYNC.L) instruction creates a
point in the executing instruction stream at which the relative order of some loads and
store is known. Loads and stores executed before the SYNC (or SYNC.L) are retired before
loads and stores after the SYNC (or SYNC.L) can start.

In order to guarantee the completion of certain instructions a SYNC.P instruction can be
used. Instructions executed before a SYNC.P instruction are completed before instructions
after the SYNC.P can start. For detail of this instruction refer to SYNC instruction as
described in Appendix A.

Table 3-15. Serialization Instructions

Mnemonic Description Defined in
SYNC2 Synchronization MIPS II

2 This includes the SYNC, SYNC.L and SYNC.P instructions.

Chapter 3 Instruction Set Overview and Summary

3-19

3.3.4.3 MIPS IV Instructions

The C790 supports a part of the MIPS IV instructions: Conditional Move instructions and
Prefetch instruction.

Conditional move operations allow ‘IF’ statements to be represented without branches.
‘THEN’ and ‘ELSE’ clauses are computed unconditionally and the results are placed in a
temporary register. Conditional move operations then transfer the temporary results to
their true register.

The Prefetch instruction fetches data expected to be used in the near future and places it
in the data cache.

For detail of these instructions, refer to the individual instruction as described in
Appendix A.

Table 3-16. MIPS IV Instructions

Mnemonic Description Defined in
MOVN Move Conditional on Not Zero MIPS IV
MOVZ Move Conditional on Zero MIPS IV
PREF Prefetch MIPS IV

Chapter 3 Instruction Set Overview and Summary

3-20

3.3.5 System Control Coprocessor (COP0) Instructions
COP0 instructions perform operations specifically on the System Control Coprocessor
registers to manipulate the memory management, exception handling, performance
monitor, and debug facilities of the processor.

COP0 instructions are enabled if the processor is in Kernel mode, or if bit 28 (CU) is set in
the Status register. Otherwise executing one of these instructions generates a Coprocessor
Unusable Exception.

For details of COP0 instructions refer to Appendix C.

Table 3-17. System Control Coprocessor Instructions

Mnemonic Description Defined in
BC0F Branch on Coprocessor 0 False MIPS I
BC0T Branch on Coprocessor 0 True MIPS I
BC0FL Branch on Coprocessor 0 False Likely MIPS II
BC0TL Branch on Coprocessor 0 True Likely MIPS II

CACHE Cache Operation R4000
DI Disable Interrupt C790
EI Enable Interrupt C790
ERET Exception Return R4000
TLBR Read Indexed TLB Entry R4000
TLBWI Write Index TLB Entry R4000
TLBWR Write Random TLB Entry R4000
TLBP Probe TLB for Matching Entry R4000
MTC0 Move To System Control Coprocessor R4000
MFC0 Move From System Control Coprocessor R4000

MTPC Move To Performance Counter C790
MFPC Move From Performance Counter C790
MTPS Move To Performance Event Specifier C790
MFPS Move From Performance Event Specifier C790

MTBPC Move To Breakpoint Control Register C790
MFBPC Move From Breakpoint Control Register C790
MTDAB Move To Data Address Breakpoint Register C790
MFDAB Move From Data Address Breakpoint Register C790
MTDABM Move To Data Address Breakpoint Mask

Register
C790

MFDABM Move From Data Address Breakpoint Mask
Register

C790

MTIAB Move To Instruction Address Breakpoint
Register

C790

MFIAB Move From Instruction Address Breakpoint
Register

C790

MTIABM Move To Instruction Address Breakpoint Mask
Register

C790

MFIABM Move From Instruction Address Breakpoint
Mask Register

C790

MTDVB Move To Data Value Breakpoint Register C790
MFDVB Move From Data Value Breakpoint Register C790
MTDVBM Move To Data Value Breakpoint Mask Register C790
MFDVBM Move From Data Value Breakpoint Mask

Register
C790

Chapter 3 Instruction Set Overview and Summary

3-21

3.3.6 Coprocessor 1 (COP1)
Coprocessor instructions perform operations in their respective coprocessors. Coprocessor
loads and stores are I-type, and coprocessor computational instructions have coprocessor-
dependent formats. Coprocessor load and store instructions are summarized in 3.3.1.3.

3.3.6.1 Coprocessor 1 (COP1) Instructions

COP1 instructions are enabled if bit 29 (CU) is set in the Status register. Otherwise
executing one of these instructions generates a Coprocessor Unusable Exception. For
details of COP1 instructions refer to Appendix D.

Table 3-18. Coprocessor 1 Instructions

Mnemonic Description Defined in
BC1F Branch on Floating Point False MIPS I
BC1T Branch on Floating Point True MIPS I
LWC1 Load Word to Floating Point MIPS I
LDC1 Load Doubleword to Floating Point MIPS II
SWC1 Store Word from Floating Point MIPS I
SDC1 Store Doubleword from Floating Point MIPS II
MFC1 Move Word from Floating Point MIPS I
MTC1 Move Word to Floating Point MIPS I
DMFC1 Move Doubleword from Floating Point MIPS III
DMTC1 Move Doubleword to Floating Point MIPS III
CFC1 Move Control Word from Floating Point MIPS I
CTC1 Move Control Word to Floating Point MIPS I
CVT.D.fmt Floating Point Convert to Double Floating Point MIPS I, III
CVT.L.fmt Floating Point Convert to Long Fixed Point MIPS III
CVT.S.fmt Floating Point Convert to Single Floating Point MIPS I, III
CVT.W.fmt Floating Point Convert to Word Fixed Point MIPS I
ADD.fmt Floating Point Add MIPS I
SUB.fmt Floating Point Subtract MIPS I
MUL.fmt Floating Point Multiply MIPS I
DIV.fmt Floating Point Divide MIPS I
ABS.fmt Floating Point Absolute MIPS I
MOV.fmt Floating Point Move MIPS I
NEG.fmt Floating Point Negate MIPS I
SQRT.fmt Floating Point Square Root MIPS II
C.cond.fmt Floating Point Compare MIPS I
CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed

Point
MIPS III

CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed
Point

MIPS II

FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point MIPS III
FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point MIPS II
ROUND.L.fmt Floating Point Round to Long Fixed Point MIPS III
ROUND.W.fmt Floating Point Round to Word Fixed Point MIPS II
TRUNC.L.fmt Floating Point Truncate to Long Fixed Point MIPS III
TRUNC.W.fmt Floating Point Truncate to Word Fixed Point MIPS II

Chapter 3 Instruction Set Overview and Summary

3-22

3.3.7 C790-Specific Instructions
The C790 extends its instruction set from the original MIPS architecture. The following
instructions are supported:

• Three-operand Multiply and Multiply/Add instructions
• Multiply instructions for Pipeline 1
• Multimedia instructions
• Enable interrupt and Disable interrupt instructions

For more information, refer to Appendices B and C.

3.3.7.1 Integer Multiply / Divide Instructions

The standard MIPS instructions for multiply, divide and move to / from HI / LO registers
execute on the I0 pipeline’s MAC unit. A complete set of new instructions has also been
defined to execute on the I1 pipeline’s MAC unit. All of these instructions are shown in the
following table.

Table 3-19. C790-Specific Multiply and Divide Instructions

OpCode Description OpCode Description
(Three Operand Multiply and Multiply-add) DIV1 Divide 1
MADD Multiply/Add DIVU1 Divide Unsigned 1
MADDU Multiply/Add Unsigned MADD1 Multiply/Add 1
MULT Multiply(3-operand) MADDU1 Multiply/Add Unsigned 1
MULTU Multiply Unsigned(3-operand) MFHI1 Move From HI 1
(Multiply Instructions for Pipeline 1) MFLO1 Move From LO 1
MULT1 Multiply 1 MTHI1 Move To HI 1
MULTU1 Multiply Unsigned 1 MTLO1 Move To LO 1

The C790 supports three-operand multiply instructions that store the multiply result to a
general purpose register in addition to the LO register. These instructions, as such, don’t
have to use the MFLO instruction to move data from the LO register to a general purpose
register.

• MULTMULTMULTMULT rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt HI || LO = rs * rt (signed)
 rd = new LO contents
• MULTUMULTUMULTUMULTU rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt HI || LO = rs * rt (unsigned)

rd = new LO contents

The C790 also supports new multiply-add instructions, MADD and MADDU. These
instructions execute multiply-accumulate operations using the HI and LO registers as
accumulators.

• MADDMADDMADDMADD rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt HI || LO += rs * rt (signed)
 rd = new LO contents
• MADDUMADDUMADDUMADDU rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt HI || LO += rs * rt (unsigned)

rd = new LO contents

Chapter 3 Instruction Set Overview and Summary

3-23

3.3.7.2 Multimedia Instructions

The C790 defines a new set of instructions to support multimedia applications. These
instructions are shown in Table 3-20. Most of these instructions do parallel operations on
data by combining the execution units of the two pipelines (I0 and I1). They form a 128-bit
path and then do parallel operations on either two 64-bit data items, four 32-bit data
items, eight 16-bit data items, or sixteen 8-bit data items.

In order to support the 128-bit datapath, 128-bit load/store operations are also
implemented.

Table 3-20. Multimedia Instructions

OpCode Description

(Arithmetic)
PADDB Parallel Add Byte
PSUBB Parallel Subtract Byte
PADDH Parallel Add Halfword
PSUBH Parallel Subtract Halfword
PADDW Parallel Add Word
PSUBW Parallel Subtract Word
PADSBH Parallel Add/Subtract

Halfword
PADDSB Parallel Add with Signed

Saturation Byte
PSUBSB Parallel Subtract with Signed

Saturation Byte
PADDSH Parallel Add with Signed

Saturation Halfword
PSUBSH Parallel Subtract with Signed

Saturation Halfword
PADDSW Parallel Add with Signed

Saturation Word
PSUBSW Parallel Subtract with Signed

Saturation Word
PADDUB Parallel Add with Unsigned

Saturation Byte
PSUBUB Parallel Subtract with

Unsigned Saturation Byte
PADDUH Parallel Add with Unsigned

Saturation Halfword
PSUBUH Parallel Subtract with

Unsigned Saturation
Halfword

PADDUW Parallel Add with Unsigned
Saturation Word

PSUBUW Parallel Subtract with
Unsigned Saturation Word

(Min/Max)
PMAXH Parallel Maximum Halfword
PMINH Parallel Minimum Halfword
PMAXW Parallel Maximum Word
PMINW Parallel Minimum Word

OpCode Description

(Absolute)
PABSH Parallel Absolute Halfword
PABSW Parallel Absolute Word
(Multiply and Divide)
PMULTW Parallel Multiply Word
PMULTUW Parallel Multiply Unsigned

Word
PDIVW Parallel Divide Word
PDIVUW Parallel Divide Unsigned

Word
PMADDW Parallel Multiply/Add Word
PMADDUW Parallel Multiply/Add

Unsigned Word
PMSUBW Parallel Multiply/Subtract

Word
PMFHI Parallel Move From HI
PMFLO Parallel Move From LO
PMTHI Parallel Move To HI
PMTLO Parallel Move To LO
PMULTH Parallel Multiply Halfword
PMADDH Parallel Multiply/Add

Halfword
PMSUBH Parallel Multiply/Subtract

Halfword
PMFHL Parallel Move From HI/LO
PMTHL Parallel Move To HI/LO
PHMADH Parallel Horizontal

Multiply/Add Halfword
PHMSBH Parallel Horizontal

Multiply/Subtract Halfword
PDIVBW Parallel Divide Broadcast

Word

Chapter 3 Instruction Set Overview and Summary

3-24

OpCode Description

(SA Operation)
MFSA Move from SA Register
MTSA Move to SA Register
MTSAB Move Byte Count to SA

Register
MTSAH Move Halfword Count to SA

Register
(Shift)
PSLLH Parallel Shift Left Logical

Halfword
PSRLH Parallel Shift Right Logical

Halfword
PSRAH Parallel Shift Right Arithmetic

Halfword
PSLLW Parallel Shift Left Logical

Word
PSRLW Parallel Shift Right Logical

Word
PSRAW Parallel Shift Right Arithmetic

Word
PSLLVW Parallel Shift Left Logical

Variable Word
PSRLVW Parallel Shift Right Logical

Variable Word
PSRAVW Parallel Shift Right Arithmetic

Variable Word
(Logical)
PAND Parallel AND
POR Parallel OR
PXOR Parallel XOR
PNOR Parallel NOR
(Compare)
PCGTB Parallel Compare for Greater

Than Byte
PCEQB Parallel Compare for Equal

Byte
PCGTH Parallel Compare for Greater

Than Halfword
PCEQH Parallel Compare for Equal

Halfword
PCGTW Parallel Compare for Greater

Than Word
PCEQW Parallel Compare for Equal

Word

OpCode Description

(Quadword Load Store)
LQ Load Quadword
SQ Store Quadword
(Pack/Extend)
PPACB Parallel Pack To Byte
PPACH Parallel Pack To Halfword
PINTEH Parallel Interleave Even

Halfword
PPACW Parallel Pack To Word
PEXTUB Parallel Extend Upper From

Byte
PEXTLB Parallel Extend Lower From

Byte
PEXTUH Parallel Extend Upper From

Halfword
PEXTLH Parallel Extend Lower From

Halfword
PEXTUW Parallel Extend Upper From

Word
PEXTLW Parallel Extend Lower From

Word
PEXT5 Parallel Extend from 5 bits
PPAC5 Parallel Pack to 5 bits
(Others)
PCPYH Parallel Copy Halfword
PCPYLD Parallel Copy Lower

Doubleword
PCPYUD Parallel Copy Upper

Doubleword
PREVH Parallel Reverse Halfword
PINTH Parallel Interleave Halfword
PEXEH Parallel Exchange Even

Halfword
PEXCH Parallel Exchange Center

Halfword
PEXEW Parallel Exchange Even

Word
PEXCW Parallel Exchange Center

Word
PROT3W Parallel Rotate 3 word
QFSRV Quadword Funnel Shift Right

Variable
PLZCW Parallel Leading Zero Count

Word

Chapter 3 Instruction Set Overview and Summary

3-25

3.4 User Instruction Latency and Repeat Rate
Table 3-21 shows the latencies and repeat rates for all user instructions executed in I0, I1,
BR, LS and C1 execution pipelines. Kernel instructions are not included, nor are
instructions not issued to these execution pipelines. See Figure 2-1 and Figure 2-4 for
execution pipeline name.

Table 3-21. Latencies and Repeat Rates for User Instruction

Instruction Type Execution Latency Repeat
Rate Comment

Integer Instructions
Add/Sub/Logical/Set I0/I1 1 1
MF/MT/HI/LO I0/I1 1 1
Shift/LUI I0/I1 1 1
Branch/Jump BR 1 1
Conditional Move I0/I1 1 1
MULT/MULTU I0 4 2 Latency relative to

Lo/Hi/GPR
MULT1/MULTU1 I1 4 2 Latency relative to

Lo1/Hi1/GPR
DIV/DIVU I0 37 37 Latency relative to

Lo/Hi
DIV1/DIVU1 I1 37 37 Latency relative to

Lo1/Hi1
MADD/MADDU I0 4 2 Latency relative to

Lo/Hi/GPR
MADD1/MADDU1 I1 4 2 Latency relative to

Lo1/Hi1/GPR
Load LS 1 1 Assuming cache hit
Store LS - 1 Assuming cache hit
Multimedia Multiply I0+I1 4 2
Multimedia Multiply/Add I0+I1 4 2
Multimedia Divide I0+I1 37 37

Floating-Point Instructions
ADD.S/SUB.S/C.cond.S C1 6 2
ADD.D/SUB.D/C.cond.D C1 8 2
ABS/NEG/MOV C1 6 2
CVT C1 8 2
MUL.S C1 6 2
MUL.D C1 8 2
DIV.S C1 21 15
DIV.D C1 35 29
SQRT.S C1 21 15
SQRT.D C1 35 29
MFC1/MTC1 C1+LS 2 1
DMFC1/DMTC1 C1+LS 2 1
CFC1/CTC1 C1+LS 2 1
LWC1/LDC1 C1+LS 2 1 Assuming cache hit
SWC1/SDC1 C1+LS − 1

Chapter 3 Instruction Set Overview and Summary

3-26

Chapter 4 CPU and COP0 Registers

4-1

4. CPU and COP0 Registers

This chapter describes the CPU registers and the System Control Coprocessor (COP0)
registers.

The CPU registers group consists of:

• General Purpose Registers (GPRs),
• Multiply and Divide registers (HIHIHIHI and LOLOLOLO registers) that hold the results of

integer multiply and divide,
• The SASASASA register which is used by the funnel shift instructions,
• The Program CounterProgram CounterProgram CounterProgram Counter (PC) register.

The COP0 registers control the processor state and report its status. These registers can
be read using the MFC0 instruction and written using the MTC0 instruction.

Chapter 4 CPU and COP0 Registers

4-2

4.1 CPU Registers
The central processing unit (CPU) provides the following registers:

• 32 128-bit General Purpose Registers (GPR)
• Four registers that hold the results of integer multiply and divide operations

(HI0, LO0, HI1, and LO1)
• Shift Amount (SA) register
• Program Counter

The C790 has 128-bit-wide General Purpose Registers (GPRs). The upper 64 bits of the
GPRs are only used by the C790-specific “Quad Load/Store”, and “Multimedia (Parallel)”
instructions.

HI0 and LO0 are the standard 64-bit HI and LO registers. HI1 and LO1, which are the
upper 64 bits of the 128-bit HI and LO registers, are only used by the new multiply and
divide instructions, such as MULT1, MULTU1, DIV1, DIVU1, MADD1, MADDU1, MFHI1,
MFLO1, MTHI1, and MTLO1. All these instructions are equivalent to existing
instructions which operate on HI0 and LO0 registers.

The Shift Amount (SA) register specifies the shift amount used by the funnel shift
instruction. The shaded registers in Figure 4-1 are new architecturally-visible registers
that are specific to the C790.

Chapter 4 CPU and COP0 Registers

4-3

General Purpose Registers
(127 64 63 0)
 63 0 63 0

$0 $0

$1 $1

$2 $2

$31 $31

HI and LO Register

HI HI1 HI (HI0)

LO LO1 LO (LO0)

SA Register
31 0

SA

Program Counter

PC

Figure 4-1. CPU Registers

Chapter 4 CPU and COP0 Registers

4-4

4.1.1 General Purpose Registers
The standard 64-bit CPU general purpose registers have been extended to 128-bit
registers. New instructions have been defined to use the upper 64-bits of these registers.

Two of the CPU general purpose registers have special assigned functions:

• r0 is hardwired to a value of zero, and can be used as the target register for any
instruction whose result is to be discarded. r0 can also be used as a source when
a zero value is needed.

• r31 is the link register used by the Jump and Link instructions. In general, it
should not be used by other instructions.

4.1.2 HI and LO Registers
The standard 64-bit HI and LO registers have been extended to 128-bit registers. New
instructions have been defined to use the upper 64-bits of these registers. HI0 and LO0
are the standard 64-bit HI and LO registers. HI1 and LO1 are the upper 64 bits of the
128-bit HI and LO registers

These four registers (HI0, LO0, HI1, LO1) store:

• the product of integer multiply operations, or
• the accumulation of integer multiply-accumulate operations, or
• the quotient (in LO0 or LO1) and remainder (in HI0 or HI1) of integer divide

operations.

4.1.3 Shift Amount (SA) Register
The SA register specifies the shift amount used by the funnel shift instruction. This is a
new architecturally-visible register and it needs to be saved and restored as part of the
processor state. New instructions have been defined to move values between this register
and the general purpose registers.

4.1.4 Program Counter (PC)
The Program Counter (PC) holds the address of the instruction which is being executed.
The PC is incremented automatically by 4 when a non-control-transfer instruction (that is:
branch, jump, ERET, SYSCALL, or TRAP) is executed. Control-transfer instructions
change the value of the PC to the target address specified by them. An exception also
changes the contents of the PC to the specified exception vector address.

Chapter 4 CPU and COP0 Registers

4-5

4.2 System Control Coprocessor (COP0) Registers
COP0 registers are listed in Table 4-1.

Table 4-1. Coprocessor 0 Registers

Register
No.

Register
Name

Description Purpose

0 Index Programmable register to select TLB entry for reading or writing MMU
1 Random Pseudo-random counter for TLB replacement MMU

2 EntryLo0 Low half of TLB entry for even PFN (Physical page number) MMU

3 EntryLo1 Low half of TLB entry for odd PFN (Physical page number) MMU

4 Context Pointer to kernel virtual PTE table in 32-bit addressing mode Exception

5 PageMask Mask that sets the TLB page size MMU

6 Wired Number of wired TLB entries MMU

7 (Reserved) Undefined Undefined

8 BadVAddr Bad virtual address Exception

9 Count Timer compare Exception

10 EntryHi High half of TLB entry (Virtual page number and ASID) MMU

11 Compare Timer compare Exception

12 Status Processor Status Register Exception

13 Cause Cause of the last exception taken Exception

14 EPC Exception Program Counter Exception

15 PRId Processor Revision Identifier MMU

16 Config Configuration Register MMU

17 (Reserved) Undefined Undefined

18 (Reserved) Undefined Undefined

19 (Reserved) Undefined Undefined

20 (Reserved) Undefined Undefined

21 (Reserved) Undefined Undefined

22 (Reserved) Undefined Undefined

23 BadPAddr Bad physical address Exception

24 Debug This is used for Debug function Debug

25 Perf Performance Counter and Control Register Exception

26 (Reserved) Undefined Undefined

27 (Reserved) Undefined Undefined

28 TagLo Cache Tag register (low bits) Cache

29 TagHi Cache Tag register (high bits) Cache

30 ErrorEPC Error Exception Program Counter Exception

31 (Reserved) Undefined Undefined

Chapter 4 CPU and COP0 Registers

4-6

4.2.1 Index Register (0)

31 30 6 5 0

P 0 Index
1 25 6

Figure 4-2. Index Register

The Index register is a 32-bit read/write register containing six bits to index an entry in
the TLB. The high-order bit of the register records the success or failure of a TLB Probe
(TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or TLB
Write Index (TLBWI) instructions.

Table 4-2 shows the format of the Index register; Table 4-2 describes the Index register
fields.

Table 4-2. Index Register Field Description

Field Bits Description Type Initial
Value

P 31 Probe failure. Set to 1 when the previous TLB Probe
(TLBP) instruction was unsuccessful.

Read/Write Undefined

Index 5:0 Index to the TLB entry affected by the TLB Read and
TLB Write instructions.

Read/Write Undefined

0 30:6 Reserved. Must be written as zeroes, and returns zeroes
when read.

Read-only 0

Chapter 4 CPU and COP0 Registers

4-7

4.2.2 Random Register (1)

31 6 5 0

0 Random
26 6

Figure 4-3. Random Register

The Random register is a read-only register. The least significant six bits index an entry
in the TLB. This register decrements every cycle an instruction is executed. Its value
ranges between an upper and a lower bound, as follows:

• A lower bound is set by the number of TLB entries reserved for exclusive use by
the operating system (the contents of the Wired register).

• An upper bound is set by the total number of TLB entries (47 maximum).

The Random register specifies the entry in the TLB that is affected by the TLB Write
Random (TLBWR) instruction. The register does not need to be read for this purpose;
however, the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon
system reset. This register is also set to the upper bound when the Wired register is
written.

Figure 4-3 shows the format of the Random Register; Table 4-3 describes the Random
Register fields.

Table 4-3. Random Register Fields

Field Bits Description Type Initial
Value

Random 5:0 TLB Random index. Read-only Upper
bound (47)

0 31:6 Reserved. Must be written as zeros, and returns
zeroes when read.

Read-only 0

Chapter 4 CPU and COP0 Registers

4-8

4.2.3 EntryLo0 Register (2), and EntryLo1 Register (3)

EntryLo0
31 26 25 6 5 3 2 1 0

0 PFN C D V G
6 20 3 1 1 1

EntryLo1
31 26 25 6 5 3 2 1 0

0 PFN C D V G
6 20 3 1 1 1

Figure 4-4. EntryLo0 and EntryLo1 Registers

The EntryLo0 and EntryLo1 registers consist of two registers that have similar format:

• EntryLo0 is used for even virtual pages.
• EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the physical
page frame number (PFN) of the TLB entry for even and odd pages, respectively, when
performing TLB read and write operations.

Figure 4-4 shows the format of the EntryLo0 and EntryLo1 Registers; Table 4-4 describes
the EntryLo0 and EntryLo1 Register fields.

Table 4-4. EntryLo0 and EntryLo1 Register Fields

Field Bits Description Type Initial
Value

PFN 25:6 Page frame number; the upper bits of the physical address. Read/Write Undefined
C 5:3 Specifies the TLB page coherency attribute.

000(0): Reserved
001(1): Reserved
010(2): Uncached
011(3): Cacheable, write-back, write allocate
100(4): Reserved
101(5): Reserved
110(6): Reserved
111(7): Uncached Accelerated

Read/Write Undefined

D 2 Dirty. If this bit is set, the page is marked as dirty and therefore
writable. This bit is actually a write-protect bit that software can use
to prevent alteration of data.

Read/Write Undefined

V 1 Valid. If this bit is set, it indicates that the TLB entry is valid;
otherwise, a TLBL or TLBS miss will occur.

Read/Write Undefined

G 0 Global. If this bit is set in both EntryLo0 and EntryLo1, then the
processor ignores the ASID during TLB look-up.

Read/Write Undefined

0 31:26 Reserved. Must be written as zeroes, and returns zeroes when
read.
EntryLo0[31] is reserved for Kernel use. It contains the written
value. This bit has no effect on any CPU or TLB operation.

Read-only 0

Reserved codes in C field may not be written correctly into TLB entry by TLBWI or
TLBWR instruction.

Chapter 4 CPU and COP0 Registers

4-9

4.2.4 Context Register (4)

31 23 22 4 3 0

PTEBase BadVPN2 0
9 19 4

Figure 4-5. Context Register Format

The Context register is a read/write register containing the pointer to an entry in the page
table entry (PTE) array. This array is an operating system data structure that stores
virtual-to-physical address translations. When there is a TLB miss, the CPU loads the
TLB with the missing translation from the PTE array. Normally, the operating system
uses the Context register to address the current page map which resides in the kernel-
mapped segment, kseg3. The Context register duplicates some of the information provided
in the BadVAddr register, but the information is arranged in a form that is more useful
for a software TLB exception handler. Figure 4-5 shows the format of the Context register;
Table 4-5 describes the Context register fields.

Table 4-5. Context Register Fields

Field Bits Description Type Initial
Value

PTEBase 31:23 This field is a read/write field for use by the operating
system. It is normally written with a value that allows the
operating system to use the Context register as a pointer
into the current PTE array in memory.

Read/Write Undefined

BadVPN2 22:4 This field is written by hardware on a miss. It contains the
virtual page number (VPN) of the most recent virtual
address that did not have a valid translation.

Read-only Undefined

0 3:0 Reserved. Must be written as zeros, and returns zeroes
when read.

Read-only 0

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the TLB
miss; bit 12 is excluded because a single TLB entry maps to an even-odd page pair. For a 4
KB page size, this format can directly address the pair-table of 8-byte PTEs. For other
page and PTE sizes, shifting and masking this value produces the appropriate address.

Chapter 4 CPU and COP0 Registers

4-10

4.2.5 PageMask Register (5)

31 25 24 13 12 0

0 MASK 0
7 12 13

Figure 4-6. PageMask Register

The PageMask register is a read/write register used for reading or writing the TLB. It
holds a comparison mask that sets the variable page size for each TLB entry, as shown in
Table 4-6.

Table 4-6. PageMask Register Field

Field Bits Description Type Initial Value
MASK 24:13 Page comparison mask.

0000 0000 0000: Page Size = 4 Kbytes
0000 0000 0011: Page Size = 16 Kbytes
0000 0000 1111: Page Size = 64 Kbytes
0000 0011 1111: Page Size = 256 Kbytes
0000 1111 1111: Page Size = 1 Mbytes
0011 1111 1111: Page Size = 4 Mbytes
1111 1111 1111: Page Size = 16 Mbytes

Read/Write Undefined

0 31:25,
12:0

Reserved. Must be written as zeros, and returns zeroes
when read.

Read-only 0

TLB read and write operations use this register as either a source or a destination; when
virtual addresses are presented for translation into physical address, the corresponding
bits in the TLB identify which virtual address bits among bits 24:13 are used in the
comparison. When the Mask field is not one of the values shown in Table 4-6, the
operation of the TLB is undefined.

Chapter 4 CPU and COP0 Registers

4-11

4.2.6 Wired Register (6)

31 6 5 0

0 Wired
26 6

Figure 4-7. Wired Register

The Wired register is a read/write register that specifies the boundary between the wired
and random entries of the TLB as shown in Figure 4-8. Wired entries are fixed, non-
replaceable entries which cannot be overwritten by a TLB write operation. Random
entries can be overwritten. Figure 4-7 shows the format of the Wired register. Table 4-7
describes the register fields.

The Wired register is set to 0 upon system reset. Writing this register also sets the
Random register to the value of its upper bound as shown in Figure 4-8.

Wired entries

Random
entries

Wired Register
value

TLB
47

0

Figure 4-8. Wired Register Boundary

Writing a value greater than 47 into this register produces undefined results.

Table 4-7. Wired Register Field Descriptions

Field Bits Description Type Initial Value
Wired 5:0 TLB Wired boundary (the number of wired TLB

entries)
Read/Write 0

0 31:6 Reserved. Must be written as zeros, and returns
zeroes when read.

Read-only 0

Chapter 4 CPU and COP0 Registers

4-12

4.2.7 BadVAddr Register (8)

31 0

BadVAddr
32

Figure 4-9. BadVAddr Register

The Bad Virtual Address register (BadVAddr) is a read-only register that displays the
most recent virtual address that caused one of the following exceptions: TLB Invalid, TLB
Modified, TLB Refill, or Address Error exceptions.

Figure 4-9 shows the format of the BadVAddr register; Table 4-8 describes the register
fields.

Table 4-8. BadVAddr Register Field

Field Bits Description Type Initial
Value

BadVAddr 31:0 The most recent virtual address that cause a TLB Invalid,
TLB modified, TLB Refill, or Address Error exception.

Read-only Undefined

Note: The BadVAddr register does not save any information for bus errors, since bus
errors are not addressing errors.

Chapter 4 CPU and COP0 Registers

4-13

4.2.8 Count Register (9)

31 0

Count
32

Figure 4-10. Count Register

The Count register acts as a real-time timer. It is incremented every CPU clock cycle. The
timer interrupt signaled through IP[7] can be disabled through the interrupt mask bit,
IM[7]. This register can be read or written.

Figure 4-10 shows the format of the Count register. Table 4-9 describes the register fields.

Table 4-9. Count Register Field

Field Bits Description Type Initial Value
Count 31:0 32-bit timer, incrementing at the CPU clock rate. Read/Write Undefined

Chapter 4 CPU and COP0 Registers

4-14

4.2.9 EntryHi Register (10)

31 13 12 8 7 0

VPN2 0 ASID
19 5 8

Figure 4-11. EntryHi Register

The EntryHi register holds the high-order bits of a TLB entry for TLB read and write
operations. The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB
Write Indexed, and TLB Read Indexed instructions.

When either a TLB Refill, TLB Invalid, or TLB Modified exception occurs, the EntryHi
register is loaded with the virtual page number (VPN2) and the ASID of the virtual
address that did not have a matching TLB entry.

Figure 4-11 shows the format of the EntryHi register. Table 4-10 describes the register
fields.

Table 4-10. EntryHi Register Fields

Field Bits Description Type Initial Value
VPN2 31:13 Virtual page number divided by two (maps to two

pages).
Read/Write Undefined

ASID 7:0 Address space ID field. An 8-bit field that lets multiple
processes share the TLB; each process can have a
distinct mapping of otherwise identical virtual page
numbers.

Read/Write Undefined

0 12:8 Reserved. Must be written as zeroes, and returns
zeroes when read.

Read-only 0

Chapter 4 CPU and COP0 Registers

4-15

4.2.10 Compare Register (11)

31 0

Compare
32

Figure 4-12. Compare Register

The Compare register acts as a timer (see also the Count register); it maintains a stable
value that does not change on its own. When the value of the Count register equals the
value of the Compare register, interrupt bit IP[7] in the Cause register is set. This causes
an interrupt as soon as the interrupt is enabled. Writing a value to the Compare register,
as a side effect, clears the timer interrupt.

For diagnostic purposes, the Compare register is a read/write register. In normal use,
however, the Compare register is write-only. Figure 4-12 shows the format of the Compare
register. Table 4-11 describes the register fields.

Table 4-11. Compare Register Field

Field Bits Description Type Initial
Value

Compare 31:0 The Compare register saves a stable value compared to the
Count register. When the value of the Count register equals to
the value of the Compare register, interrupt IP[7] occurs.

Read/Write Undefined

Chapter 4 CPU and COP0 Registers

4-16

4.2.11 Status Register (12)

31 28 27 26 25 24 23 22 21 1918 17 16 15 14 13 12 11 10 9 5 4 3 2 1 0

CU
(CU[3:0])

0 F
R

0 D
E
V

B
E
V

0 C
H

E
D
I

E
I
E

IM
[7]

0 B
E
M

IM
[3:2]

0 K
S
U

E
R
L

E
X
L

I E

4 1 1 2 1 1 3 1 1 1 1 2 1 2 5 2 1 1 1

Figure 4-13. Status Register

The Status register (SR) is a read/write register that contains the operating mode,
interrupt enabling, and the diagnostic states of the processor. Figure 4-13 shows the
format of the Status register. The following paragraphs identify the more important
Status register fields and describe the fields. Some of the important fields include:

• The 3-bit Interrupt Mask (IM) field controls the enabling of three interrupt
signals. Interrupts must be enabled before they can be asserted. Interrupts are
recognized by the processor when the corresponding bits are set in both the
Interrupt Mask and the Interrupt Enable fields of the Status register and the
Interrupt Pending field of the Cause register. The C790 does not support
software interrupts. IM[7] corresponds to the internal timer interrupt and
IM[3:2] corresponds to Int[1:0]Int[1:0]Int[1:0]Int[1:0] signals.

• The 4-bit Coprocessor Usability (CU) field (CU[3:0]) controls the usability of four
possible coprocessors. Regardless of the CU[0] bit setting, COP0 is always
usable in Kernel mode. For all other cases, an access to an unusable coprocessor
causes an exception. C790 supports coprocessor 1 (FPU).

Chapter 4 CPU and COP0 Registers

4-17

4.2.11.1 Status Register Format

Table 4-12 describes the Status register fields. All bits in the Status register are readable
and writable.

Table 4-12. Status Register Fields

Field Bits Description Type Initial
Value

CU
(CU[3:0])

31:28 Controls the usability of each of the four coprocessor unit numbers. COP0
is always usable when in Kernel mode, regardless of the setting of the
CU[0] bit.
 1 → usable
 0 → unusable

Read/
Write

Undefined

FR 26 Enable additional floating point registers
 0 → 16 registers
 1 → 32 registers

Read/
Write

0

DEV 23 Controls the location of Performance counter and debug/SIO exception
vectors.
 0 → normal
 1 → bootstrap

Read/
Write

Undefined

BEV 22 Controls the location of TLB refill and general exception vectors.
 0 → normal
 1 → bootstrap

Read/
Write

1

CH 18 Cache Hit (tag match and valid state) or Miss indication for last CACHE Hit
Invalidate and CACHE Hit Write-back Invalidate for the Data cache.
 0 → miss
 1 → hit

Read/
Write

Undefined

EDI 17 EI/DI instruction Enable: When this bit is set, the EI and DI instructions
can operate in User, Supervisor and Kernel modes and as such set or clear
the EIE bit to enable or disable all interrupts (except NMI). When this bit is
cleared, EI and DI operate as NOPs in User and Supervisor modes and
executes properly in Kernel mode.

Read/
Write

Undefined

EIE 16 Enable IE: This bit enables or disables the IE (Interrupt Enable) bit. This
bit is cleared by the DI instruction and set by the EI instruction.
 0 → disables all interrupts regardless of the value of the IE bit.
 1 → enables the IE bit. (All interrupts are enabled if IE=1, EXL=0, and
ERL=0.)
Note: IM enables individual interrupt

Read/
Write

Undefined

IM[7,3:2] 15,
11:10

Interrupt Mask: controls the enabling of each of the external and internal
interrupts. An interrupt is taken if interrupts are enabled, and the
corresponding bits are set in both the Interrupt Mask field of the Status
register and the Interrupt Pending field of the Cause register.
 0 → disabled
 1 → enabled
Note: The enabling of this bit is valid only when EIE=1, IE=1, EXL=0 and

ERL=0

Read/
Write

Undefined

BEM 12 Bus Error Mask: controls the updating of the BadPAddr register and
signaling a bus error exception.
 0 → update BadPAddr and signal a bus error exception.
 1 → do not update BadPAddr and stop signaling a bus error
 exception. This bit is set to 1 when it is a 0 and a bus error is signaled.

Read/
Write

Undefined

KSU 4:3 Kernel/Supervisor/User Mode bits:
 002 → Kernel
 012 → Supervisor
 102 → User
 112 → Reserved

Read/
Write

Undefined

Chapter 4 CPU and COP0 Registers

4-18

Field Bits Description Type Initial
Value

ERL 2 Error Level: set by the processor when Reset, NMI, performance counter,
SIO or debug exception is taken.
 0 → normal 1 → error

Read/
Write

1

EXL 1 Exception Level: set by the processor when any exception other than
Reset, NMI, performance counter, or debug exception is taken.
 0 → normal 1 → exception

Read/
Write

Undefined

IE 0 Interrupt Enable
 0 → disables all interrupts
 1 → enables all interrupts (if EIE=1, ERL=0, and EXL=0)

Read/
Write

Undefined

0 27,
25:24,
21:19,
14:13,

9:5

Reserved. Must be written as zeroes, and returns zeroes when read. Read-
only

0

4.2.11.2 Status Register Modes and Access States

Fields of the Status register set the modes and access states below.

InterruptInterruptInterruptInterrupt Enable: Enable: Enable: Enable: Interrupts are enabled when all of the following conditions are true:

• Status.IE = 1,
• and Status.EIE = 1,
• and Status.EXL = 0,
• and Status.ERL = 0

If these conditions are met, setting the IM bits enable the appropriate interrupts.

SIOSIOSIOSIO Enable: Enable: Enable: Enable: A level 2 exception by SIO is enabled when the following condition is true:

• Status.ERL = 0

If this condition is met, asserting the SIOSIOSIOSIO signal causes a Debug exception to occur.

Operating Modes:Operating Modes:Operating Modes:Operating Modes: The following CPU Status register bit settings are required for User,
Kernel, and Supervisor modes.

• The Processor is in User mode when KSU = 102 and EXL = 0 and ERL = 0.
• The processor is in Supervisor mode when KSU = 012 and EXL = 0 and ERL = 0.
• The processor is in Kernel mode when KSU = 002 or EXL = 1 or ERL = 1.

KernelKernelKernelKernel Address Space Accesses: Address Space Accesses: Address Space Accesses: Address Space Accesses: Access to the kernel address space is allowed when the
processor is in Kernel mode.

SupervisorSupervisorSupervisorSupervisor Address Space Accesses: Address Space Accesses: Address Space Accesses: Address Space Accesses: Access to the supervisor address space is allowed
when the processor is in Kernel mode or Supervisor mode, as described above.

User Address Space Accesses:User Address Space Accesses:User Address Space Accesses:User Address Space Accesses: Access to the user address space is allowed in Kernel,
Supervisor, and User modes.

Chapter 4 CPU and COP0 Registers

4-19

4.2.12 Cause Register (13)

31 30 29 28 27 19 18 16 15 14 13 12 11 10 9 7 6 2 1 0

B
D

B
D
2

CE 0 EXC2 IP
[7]

0 S
I
O
P

IP
[3:2]

0 ExcCode 0

1 1 2 9 3 1 2 1 2 3 5 2

Figure 4-14. Cause Register

The 32-bit read-only Cause register describes the cause of the most recent exception.
Figure 4-14 shows the fields of this register. Table 4-13 describes the Cause register fields.
All bits in the Cause register are read-only.

Table 4-13. Cause Register Fields

Field Bits Description Type Initial
Value

BD 31 Set by the processor when any exception other than Reset, NMI,
performance counter, or debug occurs and is taken in a branch delay
slot.
 1 → delay slot
 0 → normal

Read-only Undefined

BD2 30 Indicates whether the last NMI, performance counter, debug, or SIO
exception taken occurred in a branch delay slot.
 1 → delay slot
 0 → normal

Read-only Undefined

CE 29:28 Coprocessor unit number referenced when a Coprocessor Unusable
exception is taken.

Read-only Undefined

EXC2 18:16 Indicates the exception codes for level 2 exceptions (Performance
Counter, Reset, Debug, SIO and NMI exceptions)
 000 (0) : Res (Reset)
 001 (1) : NMI (Non-maskable Interrupt)
 010 (2) : PerfC (Performance Counter)
 011 (3) : Dbg (Debug) and SIO (SIO)
 1xx (4-7) : Reserved

Read-only Undefined

IP[7,3:2] 15,
11:10

Indicates an interrupt is pending.
 1 → interrupt pending
 0 → no interrupt

Read-only Undefined,
Int[1:0]

SIOP 12 Indicates an SIO signal is pending
 1 → SIO signal is pending
 0 → no SIO signal is pending

Read-only SIO

Chapter 4 CPU and COP0 Registers

4-20

Field Bits Description Type Initial
Value

ExcCode 6:2 Exception code filed.
00000 (0) : Int (Interrupt)
00001 (1) : Mod (TLB modification exception)
00010 (2) : TLBL (TLB exception (load or instruction fetch))
00011 (3) : TLBS (TLB exception (store))
00100 (4) : AdEL (Address error exception

 (load or instruction fetch))
00101 (5) : AdES (Address error exception (store))
00110 (6) : IBE (Bus error exception (instruction fetch))
00111 (7) : DBE (Bus error exception

 (data reference: load or store))
01000 (8) : Sys (Syscall exception)
01001 (9) : Bp (Breakpoint exception)
01010 (10): RI (Reserved instruction exception)
01011 (11): CpU(Coprocessor Unusable exception)
01100 (12): Ov (Arithmetic overflow exception)
01101 (13): Tr (Trap exception)
01110 (14): Reserved
01111 (15): FPE Floating-Point exception
 (16-31): (Reserved)

Read-
only

Undefined

0 27:19,
14:13,
9:7,
1:0

Reserved. Must be written as zeroes, and returns zeroes when read. Read-
only

0

Chapter 4 CPU and COP0 Registers

4-21

4.2.13 EPC Register (14)

31 0

EPC
32

Figure 4-15. EPC Register

The Exception Program Counter (EPC) is a read/write register that contains the address
at which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

• the virtual address of the instruction that was the direct cause of the exception,
or

• the virtual address of the immediately preceding branch or jump instruction
(when the instruction is in a branch delay slot, and the BD bit in the Cause
register is set).

On the occurrence of an exception, if the EXL bit in the Status register is set to a 1, the
processor does not update the EPC register. Figure 4-15 shows the format of the EPC
register. Table 4-14 describes the EPC register fields.

Table 4-14. EPC Register Field

Field Bits Description Type Initial Value
EPC 31:0 Contains the address at which processing can resume after an

exception has been serviced.
Read/Write Undefined

Chapter 4 CPU and COP0 Registers

4-22

4.2.14 PRId Register (15)

31 16 15 8 7 0

0 Imp Rev
16 8 8

Figure 4-16. PRId Register

The 32-bit read-only Processor Revision Identifier (PRId) register contains information
identifying the implementation and revision level of the C790 and COP0. Figure 4-16
shows the format of the PRId register; Table 4-15 describes the PRId register fields.

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and
the high-order byte (bits 15:8) is interpreted as an implementation number. The
implementation number of the C790 processor is 0x0x0x0x38383838. The content of the high-order
halfword (bits 31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is major revision number
in bits 7:4 and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, but there is no guarantee that
changes to the chip will necessarily be reflected in the PRId register, or that changes to
the revision number necessarily reflect real chip changes. For this reason, these values are
not listed and software should not rely on the revision number in the PRId register to
characterize the chip.

Table 4-15. PRId Register Fields

Field Bits Description Type Initial
Value

Imp 15:8 Implementation number Read-only 0x38
Rev 7:0 Revision number of each mask Read-only Revision

number
0 31:16 Reserved. Must be written as zeroes, and returns zeroes when read. Read-only

Chapter 4 CPU and COP0 Registers

4-23

4.2.15 Config Register (16)

31 30 28 27 19 18 17 16 15 14 13 12 11 9 8 6 5 3 2 0

0 EC 0 D
I
E

I
C
E

D
C
E

B
E

 0 N
B
E

B
P
E

IC DC 0 K0

1 3 9 1 1 1 1 1 1 1 3 3 3 3

Figure 4-17. Config Register Format

The Config register specifies various configuration options which can be selected. Figure 4-
17 shows the format of the Config register; Table 4-16 describes the Config register fields.

Some configuration options, as defined by Config bits 30:28, 15 and 11:6, are set by the
hardware during reset and are included in the Config register as read-only status bits for
the software to access. Other configuration options like 18:16 and 13:12 are set by
hardware during reset and can be modified by software. Other configuration options like
bits 2:0 are read/write and controlled by software; on reset these fields are undefined.

Table 4-16. Config Register Fields

Field Bits Description Type Initial
Value

EC 30:28 Bus clock ratio.
 000: processor clock frequency divided by 2
 001 ~ 111: (Reserved)

Read-only 0

DIE 18 Double issue enable
 0 → Single issue 1 → Double issue

Read/Write 0

ICE 17 Setting this bit to 1 enables the instruction cache.
 0 → Instruction cache disable
 1 → Instruction cache enable
The CACHE instruction for the instruction cache is enabled
regardless of the value of this bit.

Read/Write 0

DCE 16 Setting this bit to 1 enables the data cache.
 0 → Data cache disable
 1 → Data cache enable
If the cache is disabled, the PREF instruction becomes a NOP.

Read/Write 0

BE 15 Big Edian
 0 → Little Edian 1 → Big Edian

Read-only Pin

NBE 13 Setting this bit to 1 enables non-blocking load.
 0 → Disable Non-blocking loads and hit under miss
 1 → Enable Non-blocking loads and hit under miss

Read/Write 0

BPE 12 Setting this bit to 1 enables branch prediction.
 0 → Disable Branch Prediction
 1 → Enable Branch Prediction

Read/Write 0

IC 11:9 Instruction cache Size (Instruction cache size = 212+IC bytes).
 011 → 32 KB

Read-only 011

DC 8:6 Data cache Size (Data cache size = 212+DC bytes).
 011 → 32 KB

Read-only 011

Chapter 4 CPU and COP0 Registers

4-24

Field Bits Description Type Initial
Value

K0 2:0 kseg0 coherency algorithm.
 000: Reserved
 001: Reserved
 010: Uncached
 011: Cacheable, write-back, write allocate
 100: Reserved
 101: Reserved
 110: Reserved
 111: Uncached Accelerated

Read/Write Undefined

0 31,
27:19,

14,
5:3

Reserved, Must be written as zeroes, and returns zeroes when
read.

Read-only 0

With single issue enabled (DIE = 0), the C790 always fetches two instructions but only
issues a single instruction.

Chapter 4 CPU and COP0 Registers

4-25

4.2.16 BadPAddr Register (23)

31 4 3 0

BdPAddr 0
28 4

Figure 4-18. BadPAddr Register Format

The Bad Physical Address register (BadPAddr) is a read-only register that contains the
most recent physical address that caused a bus error. It is updated with a new value
whenever Status.BEM is clear (0). Once this bit is set (on the occurrence of a bus error)
the register holds the value.

Figure 4-18 shows BadPAddr register format; Table 4-17 describes the register fields.

Table 4-17. BadPAddr Register Fields

Field Bits Description Type Initial
Value

BdPAddr 31:4 Physical Address value Read-Only undefined
0 3:0 Reserved. Returns zeros when read. Read-Only 0

Chapter 4 CPU and COP0 Registers

4-26

4.2.17 Debug Registers (24)
There are seven separately addressable debug registers, which are all assigned to CP0,
register 24.

Each of the seven registers is accessed by specifying subaccess code which is bit2 to bit0 of
an instruction code.

Breakpoint Control Register (BPC) (subaccess code 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 3 2 1 0
I
A
E

D
R
E

D
W
E

D
V
E

0
I
U
E

I
S
E

I
K
E

I
E 0

D
U
E

D
S
E

D
K
E

D
X
E

I
T
E

D
T
E

B
E
D

0
D
W
B

D
R
B

I
A
B

See Table 13-3 for a detailed description of individual BPC register fields.

Chapter 4 CPU and COP0 Registers

4-27

 Instruction Address Breakpoint (IAB) (subaccess code 2)

31 2 1 0

IAB 0
30 2

Instruction Address Breakpoint Mask Register (IABM) (subaccess code 3)

31 2 1 0

IABM 0
30 2

Data Address Breakpoint Register (DAB) (subaccess code 4)

31 0

DAB
32

Data Address Breakpoint Mask Register (DABM) (subaccess code 5)

31 0

DABM
32

Data value Breakpoint Register (DVB) (subaccess code 6)

31 0

DVB
32

Data value Breakpoint Mask Register (DVBM) (subaccess code 7)

31 0

DVBM
32

Chapter 4 CPU and COP0 Registers

4-28

4.2.18 Performance Counter Registers (25)
There are three separately addressable performance counter registers, which are all
assigned to COP0, register 25.
Each of the three registers is accessed by specifying subaccess code which is bit1 to bit0 of
an instruction code.
All performance counter registers are read/write registers.

Performance Counter Control Register (PCCR)
31 30 20 19 15 14 13 12 11 10 9 5 4 3 2 1 0

C
T
E

0

EVENT1

U
1

S
1

K
1

E
X
L
1

0

EVENT0

U
0

S
0

K
0

E
X
L
0

0

1 11 5 1 1 1 1 1 5 1 1 1 1 1

Performance Counter Register 0 (PCR0)
31 30 0

O
V
F
L

VALUE

1 31

Performance Counter Register 1 (PCR1)
31 30 0

O
V
F
L

VALUE

1 31

Figure 4-19. Performance Counter Registers

Chapter 4 CPU and COP0 Registers

4-29

Table 4-18 lists the field definitions for the Performance Counter Control register.

Table 4-18. Performance Counter Control Register Fields

Field Bits Description Type Initial Value
CTE 31 Enables event counting (CTR1, CTR0) and exception

generation:
0 → Disable 1 → Enable

Read/Write 0

EVENT1 19:15 Set the event to be monitored by PCR1
00000 (0) Low-order branch issued
00001 (1) Processor cycle
00010 (2) Dual instruction issue
00011 (3) Branch miss predicted
00100 (4) TLB miss
00101 (5) DTLB miss
00110 (6) Data Cache miss
00111 (7) WBB single request unavailable
01000 (8) WBB burst request unavailable
01001 (9) WBB burst request almost full
01010 (10) WBB burst request full
01011 (11) CPU data bus busy
01100 (12) Instruction completed
01101 (13) Non-BDS instruction completed
01110 (14) COP1 instruction completed
01111 (15) Store completed
10000 (16) No event
 (17-31) Reserved

Read/Write Undefined

EVENT0 9:5 Set the event to be monitored by PCR0
00000 (0) Reserved
00001 (1) Processor cycle
00010 (2) Single instruction issue
00011 (3) Branch issue
00100 (4) BTAC miss
00101 (5) ITLB miss
00110 (6) Instruction Cache miss
00111 (7) DTLB accessed
01000 (8) Non-blocking load
01001 (9) WBB single request
01010 (10) WBB burst request
01011 (11) CPU address bus busy
01100 (12) Instruction completed
01101 (13) Non-BDS instruction completed
01110 (14) Reserved
01111 (15) Load completed
10000 (16) No event
 (17-31) Reserved.

Read/Write Undefined

U1, U0 14, 4 Enables event counting (PCR1/PCR0) in the User mode.
0 → Disable 1 → Enable

Read/Write Undefined

S1, S0 13, 3 Enables event counting (PCR1/PCR0) in the Supervisor
mode.
0 → Disable 1 → Enable

Read/Write Undefined

K1, K0 12, 2 Enables event counting (PCR1/PCR0) in the Kernel mode.
0 → Disable 1 → Enable

Read/Write Undefined

EXL1, EXL0 11, 1 Enables event counting (PCR1/PCR0) when EXL bit is set
in the Status register.
0 → Disable 1 → Enable

Read/Write Undefined

0 30:20,
10,
 0

Reserved. Must be written as zero, and returns zero when
read.

Read-only 0

Chapter 4 CPU and COP0 Registers

4-30

Table 4-19 lists the field definitions for the Performance Counter register 0 (PCR0).

Table 4-19. Performance Counter Register 0 Fields

Field Bits Description Type Initial Value
OVFL 31 Overflow flag Read/Write Undefined

VALUE 30:0 The actual counter Read/Write Undefined

Table 4-20 lists the field definitions for the Performance Counter register1 (PCR1).

Table 4-20. Performance Counter Register 1 Fields

Field Bits Description Type Initial Value
OVFL 31 Overflow flag Read/Write Undefined

VALUE 30:0 The actual counter Read/Write Undefined

Chapter 4 CPU and COP0 Registers

4-31

4.2.19 TagLo (28) and TagHi (29) Registers

TagLo
31 12 11 7 6 5 4 3 2 0

PTagLo Special use D V R L Su
20 5 1 1 1 1 3

TagHi
31 0

Special use
32

Figure 4-20. TagLo and TagHi Registers

The TagLo and TagHi registers are 32-bit read/write registers used by the CACHE
instruction. For writing to the data cache tags, the TagLo register contains the fields as
shown above and the TagHi register is not used. For writing to the data cache data portion
the TagLo register contains the data value. For writing to the instruction cache tags the
TagLo register contains the fields as defined above except that bits three and six are also
reserved bits. For writing to the instruction cache data portion, the TagLo register
contains the data (instruction) and the TagHi register contains the steering bits and bits
for the BHT as defined in Chapter 7. When reading from the caches, the values in the
TagLo and TagHi register are the same as described above for writing. These registers are
also used for manipulating the BTAC. See the description of the CACHE instruction in
Appendix C for details. Figure 4-20 shows the format of these registers for some of the
cache operations.

Chapter 4 CPU and COP0 Registers

4-32

Table 4-21 lists the field definitions of the TagLo register.

Table 4-21. TagLo Register Fields

Field Bits Description Type Initial
Value

PTagLo
[31:12]

31:12 PTagLo[31:12] specifies 20-bit physical address tag cache. Read/Write Undefined

D 6 Dirty:
 0 → Clean
 1 → Dirty

Read/Write Undefined

V 5 Valid:
 0 → Invalid
 1 → Valid

Read/Write Undefined

R 4 LRF Replacement: This bit participates in the calculation
determining which cache way will be used for the next
replacement. See Section 7.3.1 for details.

Read/Write Undefined

L 3 Lock: This bit is only used for the data cache. For instruction
cache operations this bit is treated as a reserved bit.
 0 → For this line, this side is not locked.
 1 → For this line, this side is locked.

Read/Write Undefined

Special
use, Su

11:7, 2:0 Used by the CACHE instruction to manipulate the branch target
address cache. Refer to Chapter 7 for details.

Read/Write Undefined

Table 4-22. TagHi Register Fields

Field Bits Description Type Initial
Value

Special use 31:0 The TagHi register is used by the CACHE instruction to manipulate
some of the bits of the instruction cache. Refer to Chapter 7 for
details.

Read/Write Undefined

Chapter 4 CPU and COP0 Registers

4-33

4.2.20 ErrorEPC (30)

31 0

ErrorEPC
32

Figure 4-21. ErrorEPC Register

The ErrorEPC register is similar to the EPC register, except that ErrorEPC is used on
nonmaskable interrupt (NMI), debug, SIO, and performance counter exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. This address can be:

• the virtual address of the instruction that caused the exception
• the virtual address of the immediately preceding branch or jump instruction

(when the instruction is in a branch delay slot, and the BD2 bit in the Cause
register is set).

Table 4-23 lists the field definition of the ErrorEPC register.

Table 4-23. ErrorEPC Register Field

Field Bits Description Type Initial Value
ErrorEPC 31:0 Contains the virtual address at which instruction

processing can resume after servicing an error.
Read/Write Undefined

Chapter 4 CPU and COP0 Registers

4-34

Chapter 5 Exception Processing and Reset

5-1

5. Exception Processing and Reset

This chapter describes the exception processing, including level 1 and level 2 exceptions.

Chapter 5 Exception Processing and Reset

5-2

5.1 The Exception Handling Process
Exceptions can be recognized while the program is any of its three operating modes: User,
Supervisor, or Kernel.

Exceptions are categorized into 2 groups which are level 1 exceptions and level 2
exceptions as shown in Table 5-1.

Table 5-1. Exception Levels

Level 1 Exceptions Level 2 Exceptions
Interrupt
TLB Modified
TLB Refill
TLB Invalid
Address Error
Syscall
Break
Trap
Reserved Instruction
Coprocessor Unusable
Integer Overflow
Bus Error
Floating Point Exception

Reset
NMI
Performance Counter
Debug
SIO

Compatibility Note: Level 2 exceptions are a generalization of “error level” exception
processing defined in earlier MIPS implementation.

5.1.1 Level 1 Exceptions
ExceptionExceptionExceptionException Processing Processing Processing Processing

When the processor takes a level 1 exception, the processor switches to Kernel mode.
Rather than set the Status.KSU bits to effect the switch, the Status.EXL bit is set to 1.
Whenever Status.EXL is 1, the operating mode is Kernel mode, regardless of the setting of
Status.KSU.

Then the processor saves the virtual address of the instruction canceled by the exception.
This address is saved in the EPC register. If the canceled instruction is in the delay slot of
a branch instruction, the Cause.BD bit is set to 1 and EPC is set to the address of the
branch instruction (rather than the delay slot). For non-delay-slot instructions, Cause.BD
is set to 0. If Status.EXL bit was 1 before the exception is taken, EPC and Cause.BD
aren’t set. The exception service routine examines Cause.BD to determine the true
address of the instruction that raised the exception.

In addition to setting EPC, Cause.BD, and Status.EXL, the 5 bit field Cause.ExcCode is
also set. This field specifies the cause of the exception; The Cause.CE fields may also get
set when an Coprocessor unusable exception is raised.

After setting those bits, the processor jumps to the exception vector address.

Chapter 5 Exception Processing and Reset

5-3

The basic exception handling operation performed can be described using the Figure 5-1
Level 1 Exception Processing Flowchart.

(see next page)

Disabled exceptions in level 1 exceptionDisabled exceptions in level 1 exceptionDisabled exceptions in level 1 exceptionDisabled exceptions in level 1 exception handler handler handler handler

Once a level 1 exception service routine is entered, interrupts and bus error are
unconditionally disabled.

C790 Programming Note: The only level 1 exception that is unconditionally
disabled within level 1 exceptions handler is external interrupts and bus errors.
All other level 1 exceptions still occur and are recognized (if enabled). a software
system that makes use of such exceptions must use extreme care. In particular,
it must make sure that it has saved EPC and Cause.BD somewhere (e.g. in a
software managed stack) before the exception occurs.

Chapter 5 Exception Processing and Reset

5-4

= 1

Set Cause.ExcCode
Cause.CE ← coprocessor number when CpU exception
Set BadVAddr when AdES, AdEL or any TLB exception
Set Context and EntryHi when any TLB exception
Set BadPAddr when Bus Error

Offset ← 0x180

EPC ← PC
Cause.BD ← 0

= 0

Status.EXL

No

Instr.in
Br.Dly.Slot ?

EPC ← PC-4
Cause.BD ← 1

Offset ← 0x180

Status.EXL ← 1

= Others

Exception ?

Offset ← 0x0

Status.BEV

Offset ← 0x200

PC ← 0x8000 0000+Offset PC ← 0xBFC0 0200+Offset

YES

= TLB Refill = Interrupt

= 0 (normal) = 1 (bootstrap)

Figure 5-1. Level 1 Exception processing flowchart

Chapter 5 Exception Processing and Reset

5-5

5.1.2 Level 2 Exceptions
ExceptionExceptionExceptionException Processing Processing Processing Processing

When the processor takes a level 2 exception, the processor switches to kernel mode, by
setting Status.ERL to 1.

The address of the instruction where the Level 2 exception was recognized is stored in the
ErrorEPC register. If the canceled instruction is in the delay slot of a branch instruction,
the Cause.BD2 bit is set to 1 and ErrorEPC is set to the address of the branch instruction
(rather than the delay slot). For non-delay-slot instructions, Cause.BD2 is set to 0. In
addition, the cause of the exception is stored in Cause.EXC2.

After setting those bits, the processor jumps to the exception vector address.

The basic Level 2 exception handling operation performed can be described using the
Figure 5-2 Level 2 Exception processing Flowchart.

(see next page)

Disabled Exceptions in level 2 exceptionsDisabled Exceptions in level 2 exceptionsDisabled Exceptions in level 2 exceptionsDisabled Exceptions in level 2 exceptions

When executing a Level 2 exception service routine, following exceptions are disabled.

• NMI, Interrupt, and Bus error
• Debug, SIO and Performance counter

C790 Implementation Note: Any external exception that is not level-sensitive (e.g.
NMI) must be held until it is recognized; i.e. at least until the Level 2 handler is
exited.

C790 Programming Note: It is the programmer’s responsibility to ensure that all
other internal exceptions (e.g. OVERFLOW) never occur within a Level 2 handler.
If they do occur, the corresponding Level 1 exception handler will be entered.
Since both Status.EXL and Status.ERL will be set when servicing this (nested)
exception, the ERET used to exit the service routine will operate incorrectly.

C790 Programming Note: When Status.ERL = 1, the user address, Kuseg, region
becomes a 231-byte unmapped, uncached address space (that is, mapped directly
to physical address 0x0000 0000-0x7FFF FFFF).

Chapter 5 Exception Processing and Reset

5-6

= 0 (normal)

Offset ← 0x100

ErrorEPC ← PC
Cause.BD 2← 0

No

Instr.in
Br.Dly.Slot ?

ErrorEPC ← PC-4
Cause.BD2 ← 1

Status.ERL ← 1

= Debug or SIO

Exception ?

Status.BEV ← 1

Staus.DEV

Offset ← 0x80

PC ← 0x8000 0000+Offset PC ← 0xBFC0 0200+Offset

YES

= Reset or NMI = Performance Counter

= 1 (bootstrap)

Set Cause.EXC2
1

Status.BEM ← 0
Config.DIE/ICE/DCE ← 0
Config.NBE/BPE ← 0
Random ← 47
Wired ← 0
PCCR.CTE ← 0
BPC.IAE/DRC/DWE ← 0

PC ← 0xBFC0 0000

Reset

Exception ?
= NMI

Figure 5-2. Level 2 Exception processing flowchart

Chapter 5 Exception Processing and Reset

5-7

5.2 Exception Vector Locations
Exception vector addresses for level 1 exceptions are shown in Table 5-2.
The vector address for TLB refill depends on the Status.EXL bit. The vector addresses for
level 1 exceptions also depend on the Status.BEV bit.

Table 5-2. Exception Vectors for Level 1 exceptions

Vector AddressExceptions BEV = 0 BEV = 1
TLB Refill (EXL = 0)
TLB Refill (EXL = 1)

0x8000 0000
0x8000 0180

0xBFC0 0200
0xBFC0 0380

Interrupt 0x8000 0200 0xBFC0 0400
Others 0x8000 0180 0xBFC0 0380

Exception vector addresses for level 2 exceptions are shown in Table 5-3.
The vector addresses for level 2 exceptions also depend on the Status.DEV bit.

Table 5-3. Exception Vectors for Level 2 exceptions

Vector AddressExceptions DEV = 0 DEV = 1
Reset, NMI 0xBFC0 0000 0xBFC0 0000
Performance Counter 0x8000 0080 0xBFC0 0280
Debug, SIO 0x8000 0100 0xBFC0 0300

Chapter 5 Exception Processing and Reset

5-8

5.3 Cause Register Setting
The Cause.ExcCode bits are set when a level 1 exception is taken.
The Cause.ExcCode setting is shown in Table 5-4.

Table 5-4. Cause.ExcCode Field

ExcCode Exception
0 Int (Interrupt)
1 Mod (TLB modification exception)
2 TLBL (TLB exception; load or inst fetch)
3 TLBS (TLB exception; store)
4 AdEL (Address error exception; load or inst fetch)
5 AdES (Address error exception; store)
6 IBE (Bus error exception; instruction fetch)
7 DBE (Bus error exception; load or store)
8 Sys (Syscall exception)
9 Bp (Breakpoint exception)
10 RI (Reserved instruction exception)
11 CpU (Coprocessor Unusable exeption)
12 Ov (Integer Overflow exception)
13 Tr (Trap exception)
14 Reserved
15 FPE (Floating Point Exception)

16-31 Reserved

The Cause.EXC2 bits are set when a level 2 exception is taken.
The Cause.EXC2 setting is shown in Table 5-5.

Table 5-5. Cause.EXC2 Field

EXC2 Exception
0 Res (Reset exception)
1 NMI (Non-Maskable Interrupt)
2 PerfC (Performance Counter exception)
3 Dbg (Debug exception), SIO (SIO exception)
4 SS (Single Step)

5-7 Reserved

Chapter 5 Exception Processing and Reset

5-9

5.4 Masking an exception
The following exceptions can be masked by setting bits in Status register.

NMI, Performance counter, Debug, Bus error, Interrupt and SIO

The Table 5-6 shows whether the bits mask those exceptions. Exceptions which marked
with “X” can be masked by setting (BEM, EXL or ERL) or clearing (IE or IM) the
corresponding bit in the Status register.

Table 5-6. Masking exceptions

Mask bit (in Status register)Exception IE IM BEM EXL ERL
Reset
NMI X
Performance Counter X
Debug X
SIO X
Address error
TLB Refill/Invalid/Modify
Bus error X X X
Syscall
Break
Reserved instrcution
Coprocessor Unusable
Interrupt X X X X
Integer overflow
Trap

Chapter 5 Exception Processing and Reset

5-10

5.5 Detaild Description

5.5.1 Exception Priority
Exception priority rules determine which exception is taken first, if multiple exceptions
occur on the same instruction. The Table 5-7. Shows the priority order of the exceptions.

Table 5-7. Exception Priority Order

Reset (highest priority)
NMI
Performance Counter
Instruction Breakpoint (debug)
Address error - Instruction fetch
TLB refill - Instruction fetch
TLB invalid - Instruction fetch
Bus Error - Instruction fetch
Single Step
SYSCALL, BREAK, Reserved Instruction,*
Floating Point Exception or Coprocessor Unusable*
Interrupt
Data address/value breakpoint (debug)
SIO
Integer overflow, Trap
Address error - data access
TLB refill - data access
TLB invalid - data access
TLB modified - data access
Bus error - data access (lowest priority)

* The exception priority between Reserved Instruction exception(RI) and Coprocessor
Unusable exception(CpU)

The exception priorities of the two exceptions are the same. However, when
Status.CU[1] = 0, an attempt to execute any FPU (COP1) instruction causes a CpU
exception. When Status.CU[1] = 1, the attempt is reported as an FPE(E):unimplemented
FPU exception in the Cop1 sub-instructions.
On the other hand, an attempt to execute any COP0 class Reserved Instruction causes
an RI exception regardless Status.CU[0].

Chapter 5 Exception Processing and Reset

5-11

5.5.2 Reset Exception
CauseCauseCauseCause

The RESET exception occurs when the ResetResetResetReset* signal is asserted and then deasserted. This
exception is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 2

Vector Address: 0xBFC00000Vector Address: 0xBFC00000Vector Address: 0xBFC00000Vector Address: 0xBFC00000

ProcessingProcessingProcessingProcessing

The RESET exception vector is located within uncached and unmapped address space.
Hence the cache and TLB need not be initialized in order to process the exception.

The contents of all registers in the CPU are undefined when this exception is recognized,
except for the following register fields:

• In the Status register,
 Status.ERL and Status.BEV are set to 1.

 Status.BEM is set to 0.
All other bits except for 0-fixed bits are undefined.

• In the Cause register,
 Cause.EXC2 is set to 0 (to indicate that a Reset occurred)

All other bits except for 0-fixed bits are undefined.
• In the Config register,

 DIE, ICE, DCE, NBE, and BPE bits are set to 0.
All other bits except for fixed-value, read-only bits are undefined.

• The Random register is initialized to the value of its upper bound (47).
• The Wired register is initialized to 0.
• The Counter Enable flag in the Performance Counter Control register

(PCCR.CTE) is set to 0.
• The breakpoint address enable flags in the Breakpoint Control register,

BPC.IAE, BPC.DRE, and BPC.DWE, are all set to 0.
• Valid, Dirty, LRF, and Lock bits of the data cache and the Valid and LRF bits of

the instruction cache are initialized to 0 on reset.

ServicingServicingServicingServicing

The RESET exception is serviced by:

• initializing all processor registers, coprocessor registers, caches, and the memory
system

• performing diagnostic tests
• bootstrapping the operating system

Chapter 5 Exception Processing and Reset

5-12

5.5.3 Non-Maskable Interrupt (NMI) Exception
CauseCauseCauseCause

The Non-Maskable Interrupt (NMI) exception occurs in response to the falling edge of the
NMINMINMINMI* signal. The NMI exception is maskable by setting the Status.ERL bit. It is
recognized regardless of the settings of the Status.EXL, and Status.IE bits.

ExceptionExceptionExceptionException Level: Level: Level: Level: 2

Vector Address: 0xBFC00000Vector Address: 0xBFC00000Vector Address: 0xBFC00000Vector Address: 0xBFC00000

ProcessingProcessingProcessingProcessing

NMI and RESET exceptions share the same exception vector. This vector is located within
uncached and unmapped address space; therefore, the cache and TLB need not be
initialized in order to process the exception.

When the NMI exception is recognized, all register contents are preserved with the
following exceptions:

• ErrorEPC register, which contains the restart PC, and Cause.BD2 which records
whether the NMI was recognized in a branch delay slot.

• Status.ERL and Status.BEV flags are both set to 1.
• Cause.EXC2 is set to 1 (NMI).

ServicingServicingServicingServicing

Note that the NMI service routine entry address does not depend on the Status.BEV flag.
In fact, the Status.BEV bit is unconditionally set to 1 before the NMI handler is entered.
It is up to the NMI service routine to restore the setting of the Status.BEV bit prior to exit.

Chapter 5 Exception Processing and Reset

5-13

5.5.4 Performance Counter Exception
CauseCauseCauseCause

A lower-case performance counter exception occurs when a Performance counter overflows
and conditions are met as described in Section 9.3.2. This exception is maskable by setting
Status.ERL bit.

ExceptionExceptionExceptionException Level: Level: Level: Level: 2

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0080 (DEV = 0), 0xBFC0 0280 (DEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.EXC2 is set to 2 (PerfC). The ErrorEPC register contains the address
of the instruction where the Performance counter exception was detected unless it is in a
branch delay slot, in which case the ErrorEPC register contains the address of the
preceding branch instruction and the Cause.BD2 is set.

ServicingServicingServicingServicing

When this exception is recognized, control is transferred to the applicable service routine.

Chapter 5 Exception Processing and Reset

5-14

5.5.5 Debug Exception
CauseCauseCauseCause

A DEBUG exception occurs whenever hardware breakpoint conditions as described in
Chapter 13 are detected. This exception is maskable by setting Status.ERL bit.

ExceptionExceptionExceptionException Level: Level: Level: Level: 2

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0100 (DEV = 0), 0xBFC0 0300 (DEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.EXC2 is set to 3 (Dbg). The ErrorEPC register contains the address of
the instruction where the debug exception was detected unless it is in a branch delay slot,
in which case the ErrorEPC register contains the address of the preceding branch
instruction and Cause.BD2 is set. Note that the Load data value breakpoint exception is
imprecise. That is, the instruction where the breakpoint is detected is not the load
instruction that triggers the breakpoint; see Chapter 13 for more details.

ServicingServicingServicingServicing

When this exception is recognized, control is transferred to the applicable service routine.

Chapter 5 Exception Processing and Reset

5-15

5.5.6 Address Error Exception
CauseCauseCauseCause

The Address Error exception occurs when an attempt is made to execute one of the
following:

• load or store a doubleword that is not aligned on a doubleword boundary
• load, fetch, or store a word that is not aligned on a word boundary
• load or store a halfword that is not aligned on a halfword boundary
• reference the kernel address space from User or Supervisor mode
• reference the supervisor address space from User mode

This exception is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 4 (AdEL) or 5 (AdES), depending on whether the
exception was caused due to an instruction reference (AdEL), load operation (AdEL), or
store operation (AdES).

When this exception is recognized, the virtual address that was not properly aligned or
that referenced protected address space is stored in the BadVAddr register. This update
occurs even if the exception occurs within a level 1 or level 2 exception handler. The
contents of the VPN field of the Context and EntryHi registers are undefined, as are the
contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless
this instruction is in a branch delay slot. If it is in a branch delay slot, the EPC register
contains the address of the preceding branch instruction and Cause.BD is set to indicate
that the branch delay slot instruction actually caused the exception.

Chapter 5 Exception Processing and Reset

5-16

5.5.7 TLB Refill Exception
CauseCauseCauseCause

The TLB refill exception occurs when there is no TLB entry to match a reference to a
mapped address space. This exception is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: EXL = 0: 0x8000 0000 (BEV = 0), 0xBFC0 0200 (BEV = 1)
EXL = 1: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to either a value of 2 (TLBL) or 3 (TLBS). This code
indicates whether the exception was caused due to an instruction reference, load operation,
or store operation.

When this exception is recognized, the BadVAddr, Context and EntryHi registers are
updated to hold the virtual address that failed address translation. The EntryHi register
also contains the ASID for which the translation fault occurred. These actions take place
even if the exception is recognized within a level 1 or level 2 exception handler. The
Random register normally contains a valid location in which to place the replacement TLB
entry. The contents of the EntryLo register are undefined. The EPC register contains the
address of the instruction that caused the exception, unless this instruction is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction and Cause.BD is set.

The EPC register and BD bit in the Cause register point to the address of the instruction
causing the exception.

ServicingServicingServicingServicing

To service this exception, the contents of the Context register are used as a virtual address
to fetch memory locations containing the physical page frame and access control bits for a
pair of TLB entries. The two entries are placed into the EntryLo0/EntryLo1 register; the
EntryHi and EntryLo registers are then written into the TLB.

It is possible that the virtual address used to obtain the physical address and access
control information is on a page that is not resident in the TLB. This condition is
processed by allowing a TLB refill exception in the TLB refill handler. This second
exception goes to the common exception vector because the EXL bit of the Status register
is set.

Chapter 5 Exception Processing and Reset

5-17

5.5.8 TLB Invalid Exception
CauseCauseCauseCause

The TLB invalid exception occurs when a virtual address reference matches a TLB entry
that is marked invalid (TLB valid bit cleared). This exception is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to either 2 (TLBL) or 3 (TLBS). This code indicates
whether the exception was caused due to an instruction reference, load operation, or store
operation.

When this exception is recognized, the BadVAddr, Context, and EntryHi registers are
loaded with the virtual address that failed address translation. The EntryHi register also
contains the ASID for which the translation fault occurred. These actions occur even if the
exception is recognized within a level 1 or level 2 exception handler. The Random register
normally contains a valid location in which to put the replacement TLB entry. The
contents of the EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception unless
this instruction is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is set.

ServicingServicingServicingServicing

A TLB entry is typically marked invalid when one of the following is true:

• a virtual address does not exist
• the virtual address exists, but is not in main memory (a page fault)
• a trap is desired on any reference to the page (for example, to maintain a

reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLBP
(TLB Probe), and replaced by an entry with that entry’s Valid bit set.

Chapter 5 Exception Processing and Reset

5-18

5.5.9 TLB Modified Exception
CauseCauseCauseCause

The TLB modified exception occurs when a store operation generates a virtual address
that matches a TLB entry that is marked valid but is not dirty and therefore is not
writable. This exception is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 1 (Mod) and the BadVAddr, Context, and EntryHi
registers contain the virtual address that failed address translation. The EntryHi register
also contains the ASID for which the translation fault occurred. These actions occur even
if the exception is recognized within a level 1 or level 2 exception handler. The contents of
the EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception unless
that instruction is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is set.

ServicingServicingServicingServicing

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The page identified may or may not permit
write accesses; if writes are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel in
its own data structures. The TLBP instruction places the index of the TLB entry that
must be altered into the Index register. The EntryLo register is loaded with a word
containing the physical page frame and access control bits (with the D bit set), and the
EntryHi and EntryLo registers are written into the TLB.

Chapter 5 Exception Processing and Reset

5-19

5.5.10 Bus Error Exception
CauseCauseCauseCause

A Bus Error exception is raised when BUSERR* signal is asserted during bus transactions.
This exception is masked when Status.BEM, Status.EXL or Status.ERL are set to 1.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 6 (IBE) or 7 (DBE), indicating whether the exception
was caused due to an instruction reference (IBE), load operation (DBE), or store operation
(DBE). The BadPAddr is set to the physical address which caused a bus error when
Status.BEM bit is 0.

The EPC register and BD bit in the Cause register point to the address of the instruction
currently being executed by the processor.

Note that there is no necessary relationship between a bus error and the instruction being
executed currently. For example, a bus error may be caused by instruction prefetch, or by
a data cache line operation that is unrelated to any instruction. Furthermore, it could be
caused by a load or store that was issued several instructions prior to the instruction that
was executing when the bus error was recognized.

If a bus error is caused by a load or store instruction, the instruction is retired. If the
instruction is a store, the nature of how memory is updated depends on the memory
subsystem’s design. If the instruction is a load, the value loaded into the destination
register is indeterminate. If a data value breakpoint is pending for the memory address
accessed, breakpoint recognition is implementation dependent.

ServicingServicingServicingServicing

In the C790 the bus error exception is imprecise and as such difficult to recover from and
continue processing. If a bus error occurs during instruction or data cache refills, the
cache line loaded has undefined values in it. Since it is not possible in general to
determine the offending address (from the EPC) the entire data and instruction cache
contents should be invalidated by using Index Invalidate suboperation of the CACHE
instruction. (See the CACHE instruction’s definition for details on how to do this.)

Chapter 5 Exception Processing and Reset

5-20

5.5.11 System Call Exception
CauseCauseCauseCause

A SYSCALL exception occurs as a result of executing the SYSCALL instruction. This
exception is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 8 (Sys). The EPC register contains the address of the
SYSCALL instruction unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and Cause.BD is set.

ServicingServicingServicingServicing

When this exception is recognized, control is transferred to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL instruction
does not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC
register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm, beyond
the scope of this description, may be required.

Chapter 5 Exception Processing and Reset

5-21

5.5.12 BREAK Instruction Exception
CauseCauseCauseCause

A BREAK exception occurs as a result of executing the BREAK instruction. This exception
is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 9 (Bp). The EPC register contains the address of the
BREAK instruction unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and Cause.BD is set.

ServicingServicingServicingServicing

When a BREAK exception is recognized, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the unused bits of the BREAK
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC
register contains. A value of 4 must be added to the contents of the EPC register (EPC
register + 4) to locate the instruction if it resides in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction
does not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC
register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch instruction
is required to resume execution.

Chapter 5 Exception Processing and Reset

5-22

5.5.13 Reserved Instruction Exception
CauseCauseCauseCause

The Reserved Instruction exception occurs when one of the following conditions occurs:

• an attempt is made to execute an instruction with an undefined major opcode
(bits 31:26)

• an attempt is made to execute a SPECIAL instruction with an undefined minor
opcode (bits 5:0)

• an attempt is made to execute a REGIMM instruction with an undefined minor
opcode (bits 20:16)

• an attempt is made to execute a MMI instruction with an undefined minor
opcode (bits 10:0)

• an attempt is made to execute a COPz instruction with an undefined minor
opcode (bits 25:21)

Note:Note:Note:Note: In the C790, 64-bit operations are always valid in User, Supervisor, and Kernel
mode.

This exception is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 10 (RI). The EPC register contains the address of the
reserved instruction unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction.

Chapter 5 Exception Processing and Reset

5-23

5.5.14 Coprocessor Unusable Exception
CauseCauseCauseCause

The Coprocessor Unusable exception occurs when an attempt is made to execute a
coprocessor instruction for either:

• a corresponding coprocessor unit that has not been marked usable via the
Status.Cu[] bits or

• COP0 instructions, when the unit has been marked not usable and the process
executes in either User or Supervisor mode.

NOTE: COP0 instructions always execute in Kernel mode, regardless of the
setting of Status.CU[0]. Also note that the operation of the COP0 instructions EI
and DI is not controlled by Status.CU[0]. Instead, the Status.EDI bit specifies
whether the EI and DI instructions execute in User and Supervisor modes. In
case execution is suppressed, EI and DI behave as no-operations in User and
Supervisor modes; they do not signal an exception.

The exception is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 11 (CpU) and the field Cause.CE (Coprocessor Usage
Error) is set to indicate which of the four coprocessors was referenced. The EPC register
contains the address of the unusable coprocessor instruction unless it is in a branch delay
slot, in which case the EPC register contains the address of the preceding branch
instruction.

ServicingServicingServicingServicing

The coprocessor unit to which an attempted reference was made is identified by the CE
(Coprocessor Usage Error) field, which result in one of the following situations:

• If the process is entitled access to the coprocessor, the coprocessor is marked
usable and the corresponding user state is restored to the coprocessor.

• If the process is entitled access to the coprocessor, but the coprocessor does not
exist or has failed, interpretation of the coprocessor instruction is possible.

• If the BD bit is set in the Cause register, the branch instruction must be
interpreted; then the coprocessor instruction can be emulated and execution
resumed with the EPC register advanced past the coprocessor instruction.

Chapter 5 Exception Processing and Reset

5-24

5.5.15 Interrupt Exception
CauseCauseCauseCause

The Interrupt exception occurs when one of the three interrupt signals is asserted. The
significance of the interrupts is dependent upon the specific system implementation.

Each of the three interrupts can be masked by clearing the corresponding bit in the Int-
Mask field of the Status register, and all of the three interrupts can be masked at once by
clearing the IE bit or EIE bit of the Status register.

All three interrupts are also masked at once when the EXL or ERL bit of the Status
register is set to 1.

Interrupt IP[7] is set when the Count register is equal to the Compare register.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0200 (BEV = 0), 0xBFC0 0400 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 0 (Int). The IP field of the Cause register indicates
current interrupt requests. It is possible that more than one of the bits can be
simultaneously set (or even no bits may be set) if the interrupt is asserted and then
deasserted before this register is read.

ServicingServicingServicingServicing

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting the
condition causing the interrupt pin to be asserted.

Due to the on-chip write buffer, a store to an external device (possibly clearing the
interrupt) may not occur until after other instructions in the pipeline finish. Hence, the
user must ensure that the store will occur before the return from exception instruction
(ERET) is executed. This can be insured by executing a SYNC instruction. Otherwise the
interrupt may be serviced again even though there is no actual interrupt pending.

Chapter 5 Exception Processing and Reset

5-25

5.5.16 SIO Exception
CauseCauseCauseCause

The SIO exception occurs when the SIOIntSIOIntSIOIntSIOInt signal is asserted. This exception is maskable
by setting Status.ERL bit.

ExceptionExceptionExceptionException Level: Level: Level: Level: 2

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0100 (DEV = 0), 0xBFC0 0300 (DEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.EXC2 is set to 3(Dbg). The Cause.SIOP is set to 1. The ErrorEPC
register contains the address of the instruction where the SIO exception was detected
unless if is in a branch delay slot, in which case the ErrorEPC register contains the
address of the preceding branch insruction and Cause.BD2 is set.

ServicingServicingServicingServicing

When this exception is recognized, control is transferred to the applicable service routine.

Chapter 5 Exception Processing and Reset

5-26

5.5.17 Integer Overflow Exception
CauseCauseCauseCause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or
DSUB instruction results in a 2’s complement overflow. This exception is not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 12 (Ov). The EPC register contains the address of the
instruction that caused the exception unless the instruction is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

Chapter 5 Exception Processing and Reset

5-27

5.5.18 Trap Exception
CauseCauseCauseCause

The TRAP exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU,
TLTI, TLTIU, TEQI, or TNEI instruction results in a TRUE condition. This exception is
not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The value of Cause.ExcCode is set to 13 (Tr). The EPC register contains the address of the
instruction causing the exception unless the instruction is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch instruction and
Cause.BD is set.

Chapter 5 Exception Processing and Reset

5-28

5.5.19 Floating-Point Exception
CauseCauseCauseCause

The Floating-Point exception is used by the floating-point coprocessor. This exception is
not maskable.

ExceptionExceptionExceptionException Level: Level: Level: Level: 1

Vector Address:Vector Address:Vector Address:Vector Address: 0x8000 0180 (BEV = 0), 0xBFC0 0380 (BEV = 1)

ProcessingProcessingProcessingProcessing

The common exception vector is used for this exception, and the FPE code in Cause
register is set.

The contents of the Floating-Point Control/Status register indicate the cause of this
exception.

This exception is cleared by clearing the appropriate bit in the Floating-Point
Control/Status register.

For an unimplemented instruction exception, the kernel should emulate the instruction;
for other exceptions, the kernel should pass the exception to the user program that caused
the exception.

Chapter 6 Memory Management

6-1

6. Memory Management

The C790 processor provides a memory management unit (MMU) which uses an on-chip
translation look-aside buffer (TLB) to translate virtual addresses into physical addresses.

The C790 supports the MIPS compatible 32-bit address and 64-bit data mode. Only 32-bit
virtual and physical addresses have been implemented. There is no requirement for
address sign extension and address error exception checking will not be done on the
“upper” 32-bits (which are ignored). The only condition that will generate the address
error exception will be address alignment errors and segment protection errors. In Kernel
mode, there will be address error exception free program counter wrap-around from kseg3
to kuseg.

Since there is only one addressing mode, all the four MIPS ISAs (I, II, III, IV) and the
C790 specific ISA are available without any restrictions in all of the three processor modes
(with the appropriate MIPS ISA coprocessor usable restrictions). As such the reserved
instruction (RI) exception will occur only when the processor really tries to execute an
undefined opcode.

This chapter describes the processor virtual and physical address spaces, the virtual-to-
physical address translation, the operation of the TLB in making these translations, and
those System Control Coprocessor (COP0) registers that provide the software interface to
the TLB.

Chapter 6 Memory Management

6-2

6.1 Translation Look-aside Buffer (TLB)
Mapped virtual addresses are translated into physical addresses using an on-chip TLB.
The TLB is a fully associative memory that holds 48 entries, which provide mapping to 48
odd / even page pairs (96 pages). When address mapping is indicated, each TLB entry is
checked simultaneously for a match with the virtual address that is extended with an
ASID stored in the low 8 bits of the EntryHi register.

The address mapped to a page ranges in size from 4 KB to 16 MB, in multiples of four;
that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

6.1.1 Translation Status
In C790 processor, as the one implemented in R4000, each TLB entry holds two sets of
mapping information for two odd/even page pair and therefore the translation result is
categorized into three states, hit, miss and invalid.

Upon address translation, if there is no virtual address match in all 48 entries, the
translation result is categorized as TLB miss.
In this case, an exception is taken and software refills the TLB from the page table
resident in memory. Software can write over a selected TLB entry or use a hardware
mechanism to write into a random entry.

If there is a match on translation, the following takes place in the TLB hardware.

1. The translation information for odd page and even page is read out of the matching
entry. Also the page size is extracted at the same time.

2. The TLB selects either of translation information in accordance with the page size
information extracted above and the virtual address.
This becomes the translation result in the TLB.

The translation result includes a valid flag to indicate the translation information is valid
or not. If the flag is marked as ‘valid’, the translation is handled as TLB hit. The physical
page number is extracted from the TLB and concatenated with the offset to form the
physical address (see Figure 6-1).

If the flag is marked as ‘invalid’, the translation result is recognized as TLB invalid. In
this case, an exception is taken to request the software to update the entry that got a
match upon translation, by probing the TLB using TLBP operation.

6.1.2 Multiple Matches
Multiple match is the condition that there are two or more entries that match upon
address translation. This is strictly prohibited and software is expected never to allow this
to occur.
The C790 processor does NOT provide any meanings to detect this in hardware, such as
TLB shutdown. The result of this condition is undefined and the further execution may
provide incorrect result.

Chapter 6 Memory Management

6-3

6.2 Address Spaces
This section describes the virtual and physical address spaces and the manner in which
virtual addresses are converted or “translated” into physical addresses in the TLB.

6.2.1 Virtual Address Space
The C790 only implements 32 bits of virtual address space. There is no requirement for
address sign extension and no checking will be done on the upper 32 bits of the address.

Figure 6-1 shows the translation of a virtual address into a physical address.

TLB
Entry

Virtual address

Offset ASID VPN

TLB

G ASID VPN

PFN

2. If there is a match, the page frame
number (PFN) representing the
upper bits of the physical address
(PA) is output from the TLB.

4. The Offset, which does not pass
through the TLB, is then concatenated
to the PFN.

1. Virtual address (VA) represented by
the virtual page number (VPN) is
concatenated with the ASID and
compared with the tags in the TLB.

OffsetPFN

Physical address

Figure 6-1. Overview of a Virtual-to-Physical Address Translation

As shown in Figure 6-2, the virtual address is extended with an 8-bit address space
identifier (ASID), which reduces the frequency of TLB flushing when switching contexts.
This 8-bit ASID is in the COP0 EntryHi register as described later in this chapter.

Chapter 6 Memory Management

6-4

6.2.2 Physical Address Space
Using a 32-bit address, the processor physical address space encompasses 4 GB. The
following section describes the translation of a virtual address to a physical address.

6.2.3 Virtual-to-Physical Address Translation
Converting a virtual address to a physical address begins by comparing the virtual
address from the processor with the virtual addresses in the TLB; there is a match when
the virtual page number (VPN) of the address is the same as the VPN field of the entry,
and either:

• the Global (G) bit of the TLB entry is set, or
• the ASID field of the virtual address (taken from the 8-bit ASID field of the

EntryHi register) is the same as the ASID field of the TLB entry.

If there is no match, a TLB Miss exception is taken by the processor and software can
refill the TLB from a page table of virtual / physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from the
TLB and concatenated with the Offset, which represents an address within the page
frame space. The Offset does not pass through the TLB. At the same time, the valid bit
output from TLB is checked to qualify the translation. If this bit is not set, a TLB Invalid
exception is taken by the processor and software can update the TLB.

Virtual-to-physical translation is described in greater detail throughout the remainder of
this chapter. Figure 6-9, shown at the end of this chapter, is a detailed flow diagram of
this process.

Chapter 6 Memory Management

6-5

6.2.4 32-bit Address Translation Mode
The C790 supports only 32-bit address translation mode. 64-bit addressing mode is not
supported.

Figure 6-2 shows the virtual-to-physical address translation of a 32-bit address.

• The top portion of Figure 6-2 shows a virtual address with a 12-bit, or 4-KB,
page size, labeled Offset. The remaining 20 bits of the address represent the
VPN, and index the 1M-entry page table.

• The bottom portion of Figure 6-2 shows a virtual address with a 24-bit, or 16-
MB, page size, labeled Offset. The remaining 8 bits of the address represent the
VPN, and index the 256-entry page table.

39 32 31 29 28 24 23 0

ASID VPN Offset

8 8 24
Virtual Address with 256 (28) 16-Mbyte pages

39 32 31 29 28 12 11 0

ASID VPN Offset

8 20 12

32-bit Physical Address

31 0
PFN Offset

Bits 31, 30 and 29 of the virtual
address select user, supervisor,
or kernel address spaces.

Virtual-to-physical
translation in TLB

Offset passed
unchanged to
physical
memory

Virtual-to-physical
translation in TLB

Offset passed
unchanged to
physical
memory

TLB

TLB

Virtual Address with 1M (220) 4-Kbyte pages

Figure 6-2. 32-bit Mode Virtual Address Translation

Chapter 6 Memory Management

6-6

6.2.5 Operating Modes
The processor has the three standard MIPS operating modes:

• User mode
• Supervisor mode
• Kernel mode

Selection between the three modes can be made by the operating system (when in Kernel
mode) by writing into Status register’s KSU field. The processor is forced into Kernel
mode when the processor is handling a Level 1 exception (the EXL bit is set - also called
the Exception Level mode in R-series processors) or a Level 2 exception (the ERL bit is set
- also called the Error Level mode in R-series processors).

In the following table, dashes represent ‘don’t cares’.

Table 6-1 Processor Modes

Description KSU ERL EXL
32-bit User mode 10 0 0
32-bit Supervisor mode 01 0 0
32-bit Kernel mode 00 0 0
32-bit Kernel mode (Level 1 exception) - 0 1
32-bit Kernel mode (Level 2 exception) - 1 -

 Figure 6-3 shows a state transition among these three modes.

Kernel
ModeUser Mode

Supervisor
Mode

ERET & KSU = 01

ERET & KSU =10

Exception

Exception

Figure 6-3 State Transition among Operating Modes

Chapter 6 Memory Management

6-7

Table 6-2 summarizes address space for each operating mode.

Table 6-2. Address Space

Virtual
Address

32-bit User
Mode

32-bit
Supervisor

Mode

32-bit Kernel
Mode

0xFFFF FFFF
to

0xE000 0000

Address
Error

kseg3 (0.5 GB)
Mapped

0xDFFF FFFF
to

0xC000 0000
Address

sseg (0.5 GB)
Mapped

ksseg (0.5 GB)
Mapped

0xBFFF FFFF
to

0xA000 0000

Error

Address

kseg1 (0.5 GB)
Unmapped*
Uncached

0x9FFF FFFF
to

0x8000 0000

Error kseg0 (0.5 GB)
Unmapped*
Cached**

0x7FFF FFFF
to

0x0000 0000

useg (2 GB)
Mapped

suseg (2 GB)
Mapped

kuseg (2 GB)
Mapped

(becomes
unmapped if

ERL is 1)

*Note: Virtual addresses of Kernel segments, kseg0 and kseg1, are not mapped through the
TLB and always translated into physical addresses from 0x0000 0000 to 0x1FFF FFFF.

** Note: The kseg0 cache algorithm is controlled by the K0 field in the Config register.

Chapter 6 Memory Management

6-8

6.2.6 User Mode Operations
In User mode, a single, uniform virtual address space, labeled User segment, is available;
its size is:

• 2 GB (231 bytes) (useg)

Figure 6-4 shows User mode virtual address space.

useg

0x FFFF FFFF

0x 8000 0000

0x 0000 0000

2 GB
Mapped

Address
Error

32-bitVirtual Address

Figure 6-4. User Mode Virtual Address Space

The User segment starts at address 0x0000 0000 and the current active user process
resides in useg. The TLB identically maps all references to useg from all modes, and
controls cache accessibility.

The processor operates in User mode when the Status register contains the following bit-
values:

• KSU bits = 102

• and EXL = 0
• and ERL = 0

Chapter 6 Memory Management

6-9

Table 6-3 lists the characteristics of the User mode segment, useg .

Table 6-3. User Mode Segments

Address Bit
Values

Status Register
Bit Values

Segment
Name

Virtual Address
Range

Segment
Size

KSU EXL ERL
A[31] = 0 102 0 0 useg 0x0000 0000 through

0x7FFF FFFF
2 Gbyte

(231 bytes)

User Mode, User Space(User Mode, User Space(User Mode, User Space(User Mode, User Space(useguseguseguseg))))

In User mode(KSU = 102 in the Status register), when the most-significant bit of the 32-
bit virtual address is set to 0, the useg virtual address space is selected; it covers the 231

bytes (2 GB) of the current user address space. All valid User mode virtual addresses have
their most-significant bit cleared to 0; any attempt to reference an address with the most-
significant bit set while in User mode causes an Address Error exception.

The system maps all references to useg through the TLB. Bit settings within the TLB
entry for the page determine the cacheability of a reference. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through 0x7FFF FFFF.

Chapter 6 Memory Management

6-10

6.2.7 Supervisor Mode Operations
Supervisor mode is designed for layered operating systems in which a true kernel runs in
C790 Kernel mode, and the rest of the operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register contains the
following bit-values:

• KSU = 012

• and EXL = 0
• and ERL = 0

32-bit

2 GB
Mapped

Address
error

0.5 GB
Mapped
Address

error
Address

error

suseg

0x FFFF FFFF

0x 0000 0000

0x E000 0000

0x A000 0000

0x C000 0000

0x 8000 0000

sseg

Virtual Address

Figure 6-5. Supervisor Mode Virtual Address Space

Table 6-4. Supervisor Mode Segments

Address Bit
Values

Status Register
Bit Values

Segment
Name

Virtual Address
Range

Segment
Size

KSU EXL ERL
A[31] = 0 012 0 0 suseg 0x0000 0000 through

0x7FFF FFFF
2 Gbyte

(231 bytes)
A[31:29] = 1102 012 0 0 sseg 0xC000 0000 through

0xDFFF FFFF
0.5 Gbyte
(229 bytes)

SupervisorSupervisorSupervisorSupervisor Mode, User Space (Mode, User Space (Mode, User Space (Mode, User Space (susegsusegsusegsuseg))))

In Supervisor mode (KSU = 012 in the Status register), when the most-significant bit of
the 32-bit virtual address is set to 0, the suseg virtual address space is selected; it covers
the 231 bytes (2 Gbytes) of the current user address space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through 0x7FFF FFFF.

SupervisorSupervisorSupervisorSupervisor Mode, Supervisor Space (Mode, Supervisor Space (Mode, Supervisor Space (Mode, Supervisor Space (ssegssegssegsseg))))

In Supervisor mode (KSU = 012 in the Status register), when the three most-significant
bits of the 32-bit virtual address are 1102, the sseg virtual address space is selected; it
covers 229-bytes (512 Mbytes) of the current supervisor address space. The virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through 0xDFFF
FFFF.

Chapter 6 Memory Management

6-11

6.2.8 Kernel Mode Operations
The processor operates in Kernel mode when the Status register contains one of the
following values:

• KSU = 002

• or EXL = 1
• or ERL = 1

The processor enters Kernel mode whenever an exception is detected and it remains in
Kernel mode until an Exception Return (ERET) instruction is executed. The ERET
instruction restores the processor to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-order
bits of the virtual address, as shown in Figure 6-6.

Table 6-5 lists the characteristics of the kernel mode segments.

Figure 6-6. Kernel Mode Address Space

32-bit

2 GB
Mapped

(becomes
unmapped if

ERL=1)

0.5 GB
Mapped

0.5 GB
Unmapped
Uncached

0.5 GB
Mapped

0.5 GB
Unmapped

Cached

0x FFFF FFFF

0x 0000 0000

0x E000 0000

0x A000 0000

0x C000 0000

0x 8000 0000

kseg1

ksseg

kseg3

kuseg

kseg0

Virtual Address

32-bit

0.5 GB
Kernel Boot

and I/O

0x FFFF FFFF

0x 0000 0000

0x 1FFF FFFF

Physical Address

Translated by TLB

Translated by TLB

Translated by TLB

Chapter 6 Memory Management

6-12

Table 6-5. Kernel Mode Segments

Address Bit
Values

Status Register
Bit Values

Segment
Name

Virtual Address
Range

Segment
Size

KSU EXL ERL
A[31] = 0 KSU = 002 kuseg 0x0000 0000 through

0x7FFF FFFF
2 Gbyte

(231 bytes)
A[31:29] = 1002 or kseg0 0x8000 0000 through

0x9FFF FFFF
0.5 Gbyte
(229 bytes)

A[31:29] = 1012 EXL = 1 kseg1 0xA000 0000 through
0xBFFF FFFF

0.5 Gbyte
(229 bytes)

A[31:29] = 1102 or ksseg 0xC000 0000 through
0xDFFF FFFF

0.5 Gbyte
(229 bytes)

A[31:29] = 1112 ERL = 1 kseg3 0xE000 0000 through
0xFFFF FFFF

0.5 Gbyte
(229 bytes)

KernelKernelKernelKernel Mode, User Space (Mode, User Space (Mode, User Space (Mode, User Space (kusegkusegkusegkuseg))))

In Kernel mode (KSU = 002 or EXL = 1 or ERL = 1 in the Status register), when the most-
significant bit of the virtual address, A[31], is a 0, the 32-bit kuseg virtual address space is
selected; it covers the full 231 bytes (2 GB) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual
address.

When ERL = 1 in the Status register, the user address, kuseg, region becomes a 231-byte
unmapped, uncached address space (that is, mapped directly to physical addresses 0x0000
0000 through 0x7FFF FFFF).

KernelKernelKernelKernel Mode, Kernel Space 0 (Mode, Kernel Space 0 (Mode, Kernel Space 0 (Mode, Kernel Space 0 (kseg0kseg0kseg0kseg0))))

In Kernel mode (KSU = 002 or EXL = 1 or ERL = 1 in the Status register), when the most-
significant three bits of the virtual address are 1002, 32-bit kseg0 virtual address space is
selected; it is the 229-byte (512 MB) kernel physical space.

References to kseg0 are not mapped through the TLB; the physical address selected is
defined by subtracting 0x8000 0000 from the virtual address. The K0 field of the Config
register, described in this chapter, controls cacheability and coherency.

KernelKernelKernelKernel Mode, Kernel Space 1 (Mode, Kernel Space 1 (Mode, Kernel Space 1 (Mode, Kernel Space 1 (kseg1kseg1kseg1kseg1))))

In Kernel mode (KSU = 002 or EXL = 1 or ERL = 1 in the Status register), when the most-
significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual address
space is selected; it is the 229-byte (512 MB) kernel physical space.

References to kseg1 are not mapped through the TLB; the physical address selected is
defined by subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or memory-
mapped I/O device registers) is accessed directly.

KernelKernelKernelKernel Mode, Supervisor Mode, Supervisor Mode, Supervisor Mode, Supervisor Space (Space (Space (Space (kssegkssegkssegksseg))))

In Kernel mode (KSU = 002 in the Status register), when the most-significant three bits of
the 32-bit virtual address are 1102, the ksseg virtual address space is selected; it is the
current 229-byte (512 MB) supervisor virtual space. The virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address.

Chapter 6 Memory Management

6-13

KernelKernelKernelKernel Mode, Kernel Space 3 (Mode, Kernel Space 3 (Mode, Kernel Space 3 (Mode, Kernel Space 3 (kseg3kseg3kseg3kseg3))))

In Kernel mode (KSU = 002 in the Status register), when the most-significant three bits of
the 32-bit virtual address are 1112, the kseg3 virtual address space is selected; it is the
current 229-byte (512 MB) kernel virtual space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

Chapter 6 Memory Management

6-14

6.3 System Control Coprocessor
The System Control Coprocessor (COP0) is implemented as an integral part of the CPU,
and supports memory management, address translation, exception handling, and other
privileged operations. The COP0 registers shown in Figure 6-7 plus a 48-entry TLB make
up the MMU.

Each COP0 register has a unique number that identifies it; this number is referred to as
the register number. For instance, the PageMask register is register number 5.

EntryHi
10*

EntryLo0
2*

EntryLo1
3*

Index
0*

Random
1*

PageMask
5*

Wired
6*

Context
4*

Status
12*

BadVAddr
8*

TLB

(“Safe” entries)
(See Random register,
contents of TLB Wired)

127 0

*Register number

47

0

Figure 6-7. COP0 Registers and the TLB

Chapter 6 Memory Management

6-15

6.3.1 Format of a TLB Entry
Figure 6-8 shows the TLB entry formats for the 32-bit address translation modes. Each
field of an entry has a corresponding field in the EntryHi, EntryLo0, EntryLo1, or
PageMask registers. For example, the Mask field of the TLB entry is also held in the
PageMask register.

Figure 6-8. Format of a TLB Entry

The format of the EntryHi, EntryLo, EntryLo1, and PageMask registers are nearly the
same as the TLB entry. The one exception is the Global field (G bit), which is used in the
TLB, but is reserved in the EntryHi register. The following register tables describe the
TLB entry fields shown in Figure 6-8.

32-bit Mode
127 121 120 109 108 96

0 MASK 0

7 12 13

95 77 76 75 72 71 64

VPN2 G 0 ASID

19 1 4 8

31 26 25 6 5 3 2 1 0

128-bit TLB
entry in 32-
bit mode of
C790
processor

63 58 57 38 37 35 34 33 32

 6 20 3 1 1 1

0 PFN C D V 0

 6 20 3 1 1 1

0 PFN C D V 0

Chapter 6 Memory Management

6-16

PageMask Register
31 25 24 13 12 0

0 MASK 0
7 12 13

MASK Page comparison mask.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

EntryHI Register
31 13 12 8 7 0

VPN2 0 ASID
19 5 8

VPN2 Virtual page number divided by two (maps to two pages).
ASID Address space ID field. An 8-bit field that lets multiple processes share the TLB; each

process has a distinct mapping of otherwise identical virtual page numbers.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

EntryLo0 Register
31 26 25 6 5 3 2 1 0

0 PFN C D V G
6 20 3 1 1 1

EntryLo1 Register
31 26 25 6 5 3 2 1 0

0 PFN C D V G
6 20 3 1 1 1

PFN Page frame number; the upper bits of the physical address.
C Specifies the TLB page coherency attribute; see Table 6-7.
D Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is

actually a write-protect bit that software can use to prevent alteration of data.
V Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLB invalid

exception occurs.
G Global. If this bit is set in both LO0 and LO1, then the processor ignores the ASID

during TLB lookup.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

The TLB page coherency attribute (C) bits specify whether references to the page should
be either of cached, uncached, or uncache-accelerated. Table 6-6 shows the coherency
attributes selected by the C bits.

Chapter 6 Memory Management

6-17

Table 6-6 TLB Page Coherency (C) Bit Values

C[5:3] Value Page Coherency Attribute
0 Reserved
1 Reserved
2 Uncached
3 Cacheable, write-back, write-allocate
4 Reserved
5 Reserved
6 Reserved
7 Uncached, Accelerated

Write-back with allocate fetches the line with the missed data both on load misses and on
store misses. Therefore, storing data to such pages is always performed to the data cache
and will not be sent to the write buffer.

Uncached accelerated data provides a special kind of acceleration for handling uncached
data. On a load of an uncached accelerated data item (which can range in size from a byte
to a quadword) the C790 will always fetch an aligned 128-byte quantity from memory.
These eight quadwords will be placed in a special 128-byte buffer called the uncache
accelerated buffer, or UCAB in the CPU. Any subsequent loads which “hit” the UCAB will
get the data from the UCAB. This process reduces bus traffic. The UCAB will be
invalidated under the following conditions:

• Any load operation which doesn’t hit the buffer, or
• any store operation, or
• a SYNC (or SYNC.L) operation, or
• any exception.

For uncached accelerated stores, the C790 write-back buffer (128-bit x 8) also has some
special features. On the first store of an uncached accelerated write the write-back buffer
will mark the fact that this is an uncached accelerated write to a particular address.
Subsequent uncached accelerated stores which hit within the same 128-bit address
boundary will be accumulated (gathered) within the same write buffer entry. This process
of data gathering reduces bus traffic. The gathering process will be terminated under the
following conditions:

• Any store which can’t be gathered (different attribute or different address), or
• any load operation, or
• a SYNC (or SYNC.L) operation, or
• any exception.

Chapter 6 Memory Management

6-18

6.4 Virtual-to-Physical Address Translation Process
In the supported 32-bit mode, the highest 8 to 20 bits of the virtual address (depending
upon the page size) are compared to the contents of the TLB virtual page number. The 8-
bit ASID is only compared if the global bit, G, is not set.

If a TLB entry matches, the physical address and access control bits (C, D, and V) are
retrieved from the matching TLB entry. While the V bit of the entry must be set for a
valid translation to take place, it is not involved in the determination of a matching TLB
entry.

Figure 6-9 illustrates the TLB address translation process.

Chapter 6 Memory Management

6-19

G=1?

Exception

Yes

For valid
address space, see
the section describing
Operating Modes
in this chapter.

Virtual Address (Input)

No

Yes

NoYes NoYes

No Yes

No

Yes

No

Yes

No

Yes

VPN
and

ASID

User
Mode

Unmapped
Access

Sup.
Mode

Address
Error

Access
Allowed?

VPN
Match?

No

Address
Error

Exception

Access
Allowed?

Mapped
Area?

ASID
Match?

Match Not
Match

Match?
No match entry

V=1?
No

Yes

Exception

Yes No

No
TLB

Invalid
TLB
Refill

D
= 1?Write?

TLB
Mod

Exception

NoYes

Access
Cache

C =010
or 111?

Access
Main

Memory

Physical Address (Output)

Non-
cacheable

Yes
Dirty

Figure 6-9. TLB Address Translation

Chapter 6 Memory Management

6-20

If there is no TLB entry that matches the virtual address, a TLB miss exception occurs. If
the access control bits (D and V) indicate that the access is not valid, a TLB modified or
TLB invalid exception occurs.

If the C bits equal 0102 (Uncached) or 1112 (Uncached Accelerated), the physical address
that is generated directly accesses main memory, bypassing the cache.

6.5 TLB Instructions
Table 6-7 lists the instructions that the CPU provides for working with the TLB. See
Appendix C for a detailed description on these instructions.

Table 6-7. TLB Instructions

OpCode Description of Instruction
TLBP Translation Look-aside Buffer Probe
TLBR Translation Look-aside Buffer Read
TLBWI Translation Look-aside Buffer Write Index
TLBWR Translation Look-aside Buffer Write Random

Chapter 7 Caches

7-1

7. Caches

The C790 core contains both an instruction cache and a separate data cache. The
processor also contains a small size of read only cache memory for uncached accelerated
area.

This chapter describes the cache structures, operation of the caches, and cache control.

Chapter 7 Caches

7-2

7.1 Cache Features
The two caches are configured as shown in Table 7-1:

Table 7-1. Cache Configuration

Cache Size Organization Line Size Refill Size
Instruction Cache 32 KB 2-Way 64 bytes 64 bytes
Data Cache 32 KB 2-Way 64 bytes 64 bytes

The following are the main features of the caches:

• Separate Instruction Cache and Data Cache
• Virtually indexed and physically tagged caches
• 64 Byte line size
• 64 Byte Refill size
• 2-way set-associative cache for higher performance
• Write-back policy for the Data Cache
• Missed quadword first sequential order burst refills for the Data Cache
• Data Cache line locking
• Non-Blocking Loads
• Data cache supports multiple Hits under a single miss
• No Snoop capability

No cache snoop capability has been provided. The user may choose to use CACHE
instructions to keep coherency between caches and main memory.

Chapter 7 Caches

7-3

7.2 Organization of the Caches
Organization of the caches is illustrated in Figure 7-1 and Figure 7-2. Both the
Instruction Cache and the Data Cacher are 2-way set-associative. Each cache line consists
of a tagtagtagtag and datadatadatadata. Each cache has a data line size of 64 bytes.

7.2.1 Data Cache
The Data Cache is connected to the CPU via a 128-bit bus. Therefore, the Data Cache can
supply to the CPU or the coprocessors up to a quadword of data per access.

The following diagram shows Data Cache structure. Tags are discussed in detail in a later
section.

Virtual Index 20 bits

L R V D PFN

64 bytes

DATA

Phys.Tag0 Data0

Way0

20 bits

L R V D PFN

64 bytes

DATA

Phys.Tag1 Data1

Way1

256
entries

L Lock Bit For description, see Section 7.3.7, Data Cache Lock Function

R LRF Bit For description, see Section 7.3.1, Line Replacement Algorithm

V Valid Bit For description, see Section 7.2.3, Tag Structure

D Dirty Bit For description, see Section 7.2.3, Tag Structure

Figure 7-1. Organization of Data Cache

Chapter 7 Caches

7-4

7.2.2 Instruction Cache
The Instruction Cache is connected to the CPU pipeline via a 64-bit bus. This enables the
CPU to fetch two instructions per cycle from the Instruction Cache.

The following diagram shows Instruction Cache structure. Tags are discussed in detail in
a later section.

Virtual Index 20 bits

R V PFN

64 bytes

DATA

Phys.Tag0 Data0

Way0

256
entries

20 bits

R V PFN

64 bytes

DATA

Phys.Tag1 Data1

Way1

R LRF Bit

V Valid Bit

Figure 7-2. Organization of Instruction Cache

Chapter 7 Caches

7-5

7.2.3 Tag Structure
The general structure of a tag consists of a set of state bits and a physical page frame
number or PFNPFNPFNPFN field. The Data Cache and the Instruction Cache have different numbers
of state bits; for more information, refer to the discussions in the following sections.

The size of the tag and the number of virtual address bits indexing the caches are
dependent upon the size of the cache, address space, and set associativity. The C790
supports 32-bit virtual and physical addresses as shown in the figure below:

Virtual Address (VA)

31 14 13 12 11 0

VPN OFFSET

Physical Address (PA)

31 14 13 12 11 0

PFN OFFSET

Since the cache line size is fixed at 64 bytes, that is, four quadwords per entry, the Tag
Cache associated with each way will have one tag for every four quadwords. Table 7-2
shows cache sizes, address bits and tag size.

Table 7-2. Cache Size and Access Bits

Cache Size Way Size of
Each Way

Cache Virtual
Address

Index Bits

Tag Cache
Size of Each

Way

Tag Virtual
Address

Index
Data 32 K 2 WAY 256 x 64 Bytes 13:4 256 x 20 Bits 13:6

Instruction 32 K 2 WAY 256 x 64 Bytes 13:3 256 x 20 Bits 13:6

While the caches are indexed by the virtual address, the tag comparison is physical. This
is possible because the caches and the TLB are accessed in parallel. So, when the tags
have been accessed, the page frame number is ready to be compared against the
translated virtual address for a cache hit or miss.

C790 Programming Note:

Overlapping of the cache index bit range and PFN bit range causes the “cache aliasing
problem”. C790 does not have any hardware mechanisms to detect the cache aliasing. It is
programmer’s responsibility to avoid the cache aliasing. When a physical page is mapped
on the different virtual pages, VPN[13:12] have to be same in both virtual address. The
conservative way to avoid this is that VPN[13:12] == PFN[13:12] whenever a page is
mapped.

Chapter 7 Caches

7-6

7.2.3.1 Data Cache Tag Structure

In addition to the physical page frame number (PFN), each Data Cache Tag entry also
contains additional Cache StateCache StateCache StateCache State bits as shown below. All lines in both ways of the Data
Cache have these four state bits. Cache line state bits are also illustrated in Figure 7-1.

Two state bits, DIRTY and VALID, together identify which of three states the Data Cache
is in: Valid Clean, Valid Dirty, or Invalid. Table 7-3 shows the state of the Data Cache
line as a function of DIRTY and VALID bits.

Table 7-3. Data Cache Line States

Dirty Bit (D) Valid Bit (V) Cache Line State
X 0 Invalid
0 1 Valid Clean
1 1 Valid Dirty

The LRF bit is the Least-Recently-Filled line replacement bit.

The LRF bits serve as a replacement algorithm between the two ways of the Data Cache.
A refill access to a cache line in a way will flip the LRF bit to point to the other way as the
least recently filled. For details of the LRF line update operation refer to Section 7.3.1.

As Figure 7-1 illustrates, Data Cache lines in each way have a LOCK bit. The LOCK bit,
as explained in Section 7.3.7, Data Cache Lock Function, locks lines in one of the ways to
keep data from being replaced.

7.2.3.2 Instruction Cache Tag Structure

In addition to the physical page frame number (PFN), each Instruction Cache Tag entry
also contains two additional Cache State bits as shown below. All lines in both ways of the
Instruction Cache have these two state bits.

The Instruction Cache VALID state bit defines whether each line is in the Valid or Invalid
states.

The LRF bit is the Least-Recently-Filled line replacement bit. LRF bits serve as a
replacement algorithm between the two ways of the Instruction Cache. A refill access to a
cache line in a way will flip the LRF bit to point to the other way as the least recently
filled. For details of LRF line update operation refer to Section 7.3.1.

Data Cache Tag Fields

Dirty (D) Valid (V) LRF (R) Lock (L) PFN

Instruction Cache Tag Fields

Valid (V) LRF (R) PFN

Even if Cache Instruction
try to set V = 0, D = 1
state, Dirty bit is forced to
zero in C790
implementation.

Chapter 7 Caches

7-7

7.2.4 State of Cache Tags After Reset
For all Data Cache tags the following fields are initialized to 0 upon reset:

• Valid
• Dirty
• LRF
• Lock

For all Instruction Cache tags the following fields are initialized to 0 upon reset:

• Valid
• LRF

All other fields in the Instruction Cache and the Data Cache contents are undefined upon
reset.

Chapter 7 Caches

7-8

7.3 Cache Operations
This section describes cache operation in regard to read/write policies, coherency, write-
back policy, and the lock function.

7.3.1 Line Replacement Algorithm
The line replacement policy for both the Instruction Cache and the Data Cache is based on
the Least Recently Filled (LRF) algorithm. In this policy, the LRF bit of a way is modified
(inverted) only when a cache line refill occurs to the corresponding way. Load/store
accesses to the Data Cache do not modify the LRF bit. The bit indicating which way is the
least recently filled way is the XOR of the two LRF bits of the two ways of the cache.

Table 7-4. LRF Line Replacement Algorithm

Current
Way0
LRF

Current
Way1
LRF

XOR Refill
Way

New
Way0
LRF

New
Way1
LRF

0 0 0 0 1 0
1 0 1 1 1 1
1 1 0 0 0 1
0 1 1 1 0 0

The column under XOR indicates the way which could be refilled (line replaced) on the
next refill at that line location. Note that the table shown above is valid only when none
of the ways of the cache line is locked. If a way of the cache line is locked, then regardless
of the state of the LRF bits, the least recently filled way will always be the unlocked way.

The behavior is also slightly different for Instruction and Data Caches when one of the
way is invalid. For the Data Cache the algorithm is followed exactly as given above
irrespective of the ways being valid or invalid. For the Instruction Cache the algorithm
given above is followed as long as both the ways are valid. Once a way becomes invalid,
then that way gets priority of being filled over the valid way irrespective of the LRF bits.

7.3.2 Non-blocking Loads and Hit Under Miss
The Data Cache supports non-blocking loadnon-blocking loadnon-blocking loadnon-blocking load and hit under misshit under misshit under misshit under miss to improve performance.
When a Data Cache miss occurs or an uncached load instruction is issued, Non-blocking
load allows the pipeline to continue instruction execution until one of the following occurs:

1. A subsequent non-load/store/pref instruction has data dependency with the load
that is pending (to be retired).

2. A pipeline0 stalls.

Chapter 7 Caches

7-9

Hit under miss is a feature that allows access (load or store) to the Data Cache while a
previous load miss (cached, uncached or uncached accelerated), a previous store miss
(cached) or a previous prefetch miss (cached) is still pending. In this case, access to the
cache proceeds and the pipe does not stall.

Uncached loads also do not stall the pipeline while they are pending (to be retired). The
pipeline continues instruction execution until one of the following occurs:

1. A subsequent load/store/pref instruction has data dependency with the load that
is pending (to be retired).

2. A Data Cache miss occurs or a miss occurs on the Uncached Accelerated Buffer.

3. An Uncached load instruction is issued.

To summarize, Non-blocking load and Hit under miss allow the pipelene to continue
instruction execution until one of following occurs when a Data Cache miss occurs or an
uncached load instruction is issued:

1. A subsequent instruction has data dependency with the load that is pending (to
be retired).

2. A Data Cache miss occurs or a miss occurs on the Uncached Accelerated Buffer.

3. An uncached load instruction is issued.

4. A pipeline0 stalls.

Loads to the GPRs (IU) and FPRs (FPU) all follow the non-blocking protocol (when it is
enabled). Loads to COP1 is alwaysalwaysalwaysalways blocking.

7.3.3 Cache Miss and Hit Operations
In case of a Data Cache hit, the cache provides data to the CPU in 128-bit (single
quadword) quantities. In case of an Instruction Cache hit, the cache provides data
(“instruction”) in 64-bit quantities. CPU reads or writes to the Data Cache in quantities
less than 128 bits are specified by the least significant four bits of the address, bits 3:0.

Cache misses are processed by the cache controller in 64-byte quantities - one cache line.
Since the caches are connected to the system bus via a 128-bit bus, cache refill takes a
burst of 4 bus cycles (8 CPU cycles) that is, four quadwords are transferred in 4 bus cycles
(actual transfer time can be more due to bus arbitration etc). These reads are performed in
sequential order for both the Instruction Cache and the Data Cache. The quadword for
which the address missed is always fetched first.

Table 7-5 indicates the sequential order. PA[5:4] are two least-significant address bits that
are put out on the CPU Bus. Figure 7-3 illustrates the case where the second quadword,
shaded area, missed and shows the order in which data are read from main memory.

Chapter 7 Caches

7-10

Table 7-5. Quadword Retrieved Address PA[5:4]

Bus Starting Block Address PA[5:4]
Cycle 00 01 10 11

1 00 01 10 11
2 01 10 11 00
3 10 11 00 01
4 11 00 01 10

128 bits 128 bits 128 bits 128 bits
11 10 01 00

Read order Third Second First Fourth

Figure 7-3. Read Missed Processed in Sequential Order

In case of a write miss to the Data Cache (for an allocate-on-write address), the cache
controller will read in sequential order a cache line from main memory. Whether the cache
line, being replaced, is first written out to memory or not - due to the DIRTY bit being set -
is discussed in the next section.

The Instruction Cache processes cache misses in burst of 4 quadwords, just like the Data
Cache. Furthermore, in case of an Instruction Cache miss, the pipeline starts in the same
cycle the final quadword is stored into the Instruction Cache.

7.3.4 Data Cache Writeback Policy
Data cache lines are written back to the memory in the following cases:

1. The processor executes Index Write Back Invalidate CACHE instruction
suboperation as defined in Appendix C and the line data are dirty. Or Hit
Writeback Invalidate or Hit Writeback without Invalidate CACHE
suboperations hit on Data Cache and the line data are dirty.

2. A read or write miss occurs and the line data are dirty. In this case the line has
to be written to memory before it can be replaced by the miss data.

Chapter 7 Caches

7-11

7.3.5 Data Cache State Transitions
As discussed previously, lines in the Data Cache can be in one of several states: InvalidInvalidInvalidInvalid,
Valid CleanValid CleanValid CleanValid Clean or Valid DirtyValid DirtyValid DirtyValid Dirty.

Invalid means the Data Cache entry does not contain valid data. Upon a miss, the cache
can load data into this cache line with no further actions.

The Valid Clean state indicates that there are valid data in the Data Cache line and they
are the same as memory. All writeback segments have their data in the Valid Clean state
until they are written to by the processor.

The C790 supports the write-back protocol, hence the need for a Valid Dirty state. A Data
Cache line transitions to the Valid Dirty state when the cache line is written to without
reflecting the operation on the bus - the writeback protocol. In this case, the data in the
cache does not match the data in memory.

Figure 7-4 shows the transition diagram of the Data Cache performing according to the
writeback policy. For details on the CACHE operation, refer to Appendix C.

Invalid Valid
Clean

CPU
Write
CPU
Read

Valid
Dirty

CPU
Read

CPU
Write

Read Miss
PREF Miss
CACHE Index Store Tag (if V = 1, D = 0)
CACHE Hit W/B without Invalidate (if hit)

CACHE Index Invalidate
CACHE Index WriteBack Invalidate

CACHE Hit WriteBack Invalidate (if hit)
CACHE Hit Invalidate (if hit)

CACHE Index Store Tag (if V = 0)
Reset

Write Miss
CACHE Index Store Tag (if V = 1, D = 1)

Figure 7-4. Data Cache Transition Diagram, Writeback Protocol

Chapter 7 Caches

7-12

7.3.6 Instruction Cache State Transitions
Cache lines in the Instruction Cache can be in either of two states: InvalidInvalidInvalidInvalid or ValidValidValidValid.

Invalid means the Instruction Cache entry does not contain valid instruction data. Upon a
miss, the cache can load instructions into this cache line with no further actions.

The Valid state indicates that there are valid instructions in the cache line and so there is
no need for miss processing.

The transition diagram for the Instruction Cache is simple; refer to Figure 7-5. For
details on the CACHE instructions refer to Appendix C.

INVALID

CPU
Read

CACHE Index Store Tag (if V = 1)
CPU Read Miss
CACHE Fill

CACHE Index Store Tag (if V = 0)
CACHE Index Invalidate
Reset

CACHE Hit
Invalidate

(if hit)

VALID

Figure 7-5. Instruction Cache Transition Diagram

7.3.7 Data Cache Lock Function
In a 2-way set-associative Data Cache, such as the one present in the C790, there is no
explicit way of forcing data to be retained in the cache. The LRF-based mechanism
dynamically determines which cache line should be replaced. A Data Cache lock function
has been defined to aid in retaining critical pieces of data in the Data Cache under strict
program control.

Each entry on each way of the Data Cache has a Lock (L) bit. The Lock bit aids in locking
the line by writing directly into it. After locking the line, the LRF bit is no longer
meaningful. Thus, if one of the ways for a particular line is locked, the other way is the
only way available for caching. Thus, once a line is locked with a particular physical
address tag, any other virtual address which maps onto the same cache line will have only
a direct mapped location rather than a 2-way location.

To lock the Data Cache, the following two CACHE instruction suboperations can be used:

INDEX STORE TAG (DCACHE)

INDEX STORE DATA (DCACHE)

For details of the above CACHE instruction suboperation refer to Section 7.6. To lock a
Data Cache line, the following code sequence can be used:

Chapter 7 Caches

7-13

li t0,0x00010068 //PTagLo = 0x00010, D=V=L=1, R=0
mtc0 t0,$28 //t0 -> TagLo
sync.l
cache 18,0(r0) //TagLo -> Tag(way0)
sync.l
la s0,0x00010000
sw t1,0(s0) //store contents of t1 into

//locked cache line

In this example, the tag has been modified using the CACHE instruction and the data has
been updated using a Store instruction.

The following restrictions apply to line locking:

• The result of re-locking a locked line is undefined

• The results of locking both ways of a cache line are undefined

To unlock Data Cache lines, the following code sequence can be used:

li t0,0x00010060 //D=V=1, L=R=0
mtc0 t0,$28 //t0 -> TagLo
sync.l
cache 18,0(r0) //TagLo -> Tag(way0)
sync.l

7.3.7.1 Operations During Lock

When the lock bit is set for cache line (index), only the other way is available for handling
cache misses. The misses are blocking. A write access to a locked line in the Data Cache
takes place only to the cache without affecting the state of memory. Writes to locked cache
lines will notnotnotnot set the DIRTY (D) bit.

7.3.8 Relationship Between Cached and Uncached Operations
Uncached and Uncached Accelerated load and store operations are always executed in
order on the CPU bus. Cached load operations can precede earlier store data present in
buffers on the CPU bus. All store data present in buffers prevents a SYNC (or SYNC.L)
instruction from completing until the store data has been sent either to the Data Cache or
the CPU bus.

Stores with the uncached and uncached accelerated attributes bypass the Data Cache
completely.

Chapter 7 Caches

7-14

7.4 Uncached Accelerated Buffer
The C790 has a small size of read only cache memory for uncached accelerated area to
reduce bus traffic. This read only cache, the Uncached Accelerated Buffer (UCAB), can
introduce data to itself only by refill process due to a load miss on the UCAB. Once load
instructions hit on the UCAB, data are provided directly from the UCAB. The UCAB is
invalidated under the following conditions:

• Any load operation which doesn’t hit the UCAB, or
• Any store operation, or
• A SYNC (or SYNC.L) operation, or
• Any exception

Snoop is not supported for the UCAB.

7.4.1 UCAB Configuration
The UCAB is configured as shown in Table 7-6.

Table 7-6. UCAB Configuration

Size Organization Line Size Refill Size
Uncached Accelerated Buffer 128 bytes Direct Map 128 bytes 128 bytes

7.4.2 Tag Structure
The UCAB is also indexed by the virtual address, the tag comparison is physical. Table 7-7
shows the UCAB size and access bits.

Table 7-7. UCAB Size and Access Bits

Size Way Size UCAB Virtual
Index Bits

UCAB
Tag Size

UCAB Tag Virtual
Index Bits

UCAB 128 B Direct Map 1×128
Bytes 6:4 1×25 Bits

The least significant 5 bits of the UCAB Tag ([11:7]) is identical with the virtual address
[11:7]. The UCAB Tag has one bit of valid bit. The UCAB Tag doesn’t have Ditty, LRF,
Lock bits. The valid bit of UCAB Tag is initialized to 0 upon reset.

7.4.3 Non-blocking Loads and HiT under Miss
The UCAB also supports non-blocking load and hit under miss as well as the Data Cache.
Non-blocking load and Hit under miss allow the pipeline to continue instruction execution
until one of following occurs when an Uncached Accelerated Buffer miss occurs:

1. A subsequent instruction has data dependency with the load that is pending (to
be retired).

2. A Data cache miss occurs or a miss occurs on the UCAB.

3. An uncached load instruction is issued.

4. A pipeline0 stalls.

Chapter 7 Caches

7-15

7.5 Cache Control Registers
The operations of the caches are controlled by certain programmable bits in the Config
register. These bits are:

ICE Instruction Cache Enable

DCE Data Cache Enable

IC Instruction Cache Size

DC Data Cache Size

IB Icache Line Size

DB Dcache Line Size

For details of these configuration bits refer to the COP0 register section.

The two cache tag registers TagLo and TagHi are 32-bit read/write registers that hold the
tag and state of the cache line during initialization and diagnostics. The Tag registers are
manipulated by MTC0 and CACHE instructions.

TagLo

31 12 11 7 6 5 4 3 2 0

PTagLo 0 D V R L 0

TagHi

where

PTagLo Specifies physical address bits 31:12

D Cache State DIRTY bit (Not used for the Instruction Cache)

V Cache State VALID bit

R LRF Bit

L LOCK Bit (Not used for the Instruction Cache)

0 Must be written as zeros, will return zero on reads

The TagHi register contains instruction- and operation-specific items (see the next
section).

Chapter 7 Caches

7-16

7.6 CACHE Instruction
For information on the CACHE instruction, please refer to Appendix C.

Chapter 8 CPU Bus

8-1

8. CPU Bus

The C790 CPU core is connected to the rest of the system1, and to external devices,
through the group of on-chip C790 system bus signals called the CPU BusCPU BusCPU BusCPU Bus. This chapter
defines the architecture of the CPU Bus and describes it in the context of an overall sys-
tem design.

This chapter describes the following:

• the CPU Bus architecture and agents on the CPU Bus
• the types of transactions possible between agents on the bus
• the bus protocols for transactions

1 The system consists of a DMA Controller (DMAC) as a master, and various slave devices.

Chapter 8 CPU Bus

8-2

8.1 Introduction
The CPU Bus is an on-chip bus in a highly integrated processor. All agentsagentsagentsagents (see definitions
section 8.1.1 below) on the CPU Bus are equipped with a CPU Bus interface unit connect-
ed via CPU Bus signals. An agent acts like a master when it initiates reads or writes on
the bus. An agent acts like a slave when it responds to reads or writes initiated by a mas-
ter. For the CPU Bus to operate properly, an arbiter is needed, to perform arbitration be-
tween the CPU and the other bus masters. The arbiter is located in the CPU, and CPU
arbitration behavior is discussed in Section 8.5.1, Arbitration Operations.

The following are main features of the CPU Bus:
• Separate data and address buses (Demultiplexed operation)
• 128-bit data bus
• Clocked synchronous operations
• Peak transfer rate of 2.1GB/sec (@133 MHz bus clock)
• 8/16/32/64/128-bit and burst accesses
• Multimaster capability
• Pipelined operations
• No turn-around or dead cycles between transfers

The CPU Bus does not provide:
• Cache coherency support
• Split transactions

Chapter 8 CPU Bus

8-3

8.1.1 Terminology
Address PhaseAddress PhaseAddress PhaseAddress Phase is the cycles during which an address is driven on the CPU Bus through
the cycle the address is acknowledged.

AgentAgentAgentAgent refers to different devices on the CPU Bus.

AssertAssertAssertAssert means taking a signal to its active level. An active high signal is “1” when asserted,
and an active low signal is “0” when asserted.

CPUCPUCPUCPU means the C790 CPU. The terms CPU and C790 are used interchangeably in this
chapter.

Data PhaseData PhaseData PhaseData Phase is the cycles during which data are driven on the bus through the cycle they
are acknowledged.

DMACDMACDMACDMAC is the DMA Controller in the system.

MasterMasterMasterMaster means the current bus master on the CPU Bus.

MEMMEMMEMMEM refers to the system memory controller.

NegateNegateNegateNegate/Deassert/Deassert/Deassert/Deassert means taking a signal to its inactive state. An active high signal is “0”
when deasserted. An active low signal is “1” when negated.

* (after signal name) means active low signal.

8.1.2 Signal Naming Convention
Table 8-1 shows the prefixes used for naming signals in a system incorporating the C790
CPU Bus.

Table 8-1. System Signal Naming Convention

Signal
Prefix

Signal Type

CPU Signals from the CPU multiplexed or logically combined with the DMAC signals
to form the system signals. These signals include: CPUADDR, CPUBE*,
CPURD*, CPUWR*, CPUTSIZE, CPUASTART*, CPUDSTART*, CPUDATA.

SYS The combined or multiplexed signals from any agents on the CPU Bus. These
signals include: SYSADDR, SYSBE*, SYSRD*, SYSWR*, SYSTSIZE,
SYSASTART*, SYSDSTART*, SYSAACK*, SYSDACK*, SYSDATA.

Chapter 8 CPU Bus

8-4

8.2 CPU Bus Architecture
The CPU Bus design is a synchronous pipelined bus with separate data (128-bit) and
address buses running at half the clock frequency of the CPU. The CPU is connected to
the rest of the system and external devices through this bus. Figure 8-1 illustrates the
architecture of the bus and identifies different agents that can be on the bus.

CPU
Bus

Memory
Controller

DMAC
CPU

CPU
Bus

Interface

WBB

D$

I$

I/O
Devices

Figure 8-1. CPU Bus Architecture

Chapter 8 CPU Bus

8-5

8.2.1 CPU Bus Connectivity for Address and Control Paths
Figure 8-2 illustrates the system-level interconnections for address paths of the CPU Bus.

Support logic is needed to handle the fact that the system contains multiple masters.
AGNT* is used to control the multiplexer in the support logic that selects a master to be
connected to the CPU Bus.

C790
CPU

DMAC

Mux

CPUADDR,
CPUBE*,
CPUTSIZE,
CPURD*,
CPUWR*

DMAADDR,
DMATSIZE,
DMARD*,
DMAWR*

SYSADDR,
SYSBE*,
SYSTSIZE,
SYSRD*,
SYSWR*

Memory
Controller

I/O
Devices

SYSAACK*
DMAAACK*

MEMAACK*

IOAACK*

DMAASTART *
CPUASTART *

SYSASTART *

D Q
AGNT*

BUSCLK

Figure 8-2. CPU Bus Address and Control Path Connections in System

Chapter 8 CPU Bus

8-6

8.2.2 CPU Bus Connectivity for Data Paths
Figure 8-3 illustrates the system-level interconnections for data paths of the CPU Bus.

For read cycles, the support logic must control the multiplexer so that the correct source of
data is put on SYSDATA.

For write cycles, the support logic must detect whether the cycle is a CPU cycle or a DMA
cycle, and use this to control the multiplexer.

C790
CPU

DMAC

Memory
Controller

I/O
Devices

Mux

CPUDATA
SYSDATA

SYSDACK*
DMADACK*

MEMDACK*

IODACK*

CPUDSTART*

DMADSTART*

SYSDSTART*

MEMDATA

IODATA

DMADATA

Figure 8-3. CPU Bus Data Path Connections in System

Chapter 8 CPU Bus

8-7

8.3 CPU Bus Signal Descriptions
This section describes the CPU Bus signals and their usage in different bus operations.

8.3.1 Address Bus Signals

CPUADDR[31:4] CPU address bus

CPUADDR[31:4] bits are valid during the address phase and can be sampled by the slave
when CPUASTART* is sampled low.

SYSADDR[31:4] System address bus

SYSADDR[31:4] are multiplexed outputs selecting between CPUADDR[31:4] and DMA
address. They are valid during the address phase and can be sampled by the slave when
SYSASTART* is sampled low.

CPUBE[15:0]* CPU byte enables

CPUBE[iiii]*, driven during the address phase, indicates valid data on byte iiii of
CPUDATA[127:0] during the data phase. CPU byte enables can be sampled by the slave
when CPUASTART* is sampled low. CPU byte enables are used only in CPU single cycles.

SYSBE[15:0]* System byte enables

SYSBE[iiii]*, driven during the address phase, indicates valid data on byte iiii of
SYSDATA[127:0] during the data phase. System byte enables can be sampled by the slave
when SYSASTART* is sampled low. System byte enables are used only in CPU single
cycles.

Chapter 8 CPU Bus

8-8

CPUTRANSTYPE[4:0] CPU transaction type

CPUTRANSTYPE[4:0], driven during the address phase, indicates the type of operation.
CPU transaction type can be sampled by the slave when CPUASTART* is sampled low.

Table 8-2. Bus Transaction Types

CPUTRANSTYPE Type of Bus Transaction
00000 Not defined or miscellaneous

00001 - 00111 Reserved
01000 Data Cache Refill due to Load Miss
01001 Data Cache Refill due to Prefetch Instruction
01010 Data Cache Refill due to Store Miss
01011 Uncached Load
01100 Uncached Accelerated Load

01101 - 01111 Reserved
10000 Instruction Cache Miss Refill
10001 Cache Instruction - Fill Suboperation
10010 Uncached Execution

10011 - 10111 Reserved
11000 Data Cache Write-back due to Load/Store Miss
11001 Data Cache Write-back due to Cache Instruction
11010 Uncached Store
11011 Uncached Accelerated Store
11100 Non-allocated Store

11101 - 11111 Reserved

CPURD* CPU read

The CPU asserts this signal to indicate a read operation. This signal can be sampled when
CPUASTART* is sampled low. This signal is active during the address phase. CPURD* is
used in transfers initiated by the CPU.

CPUWR* CPU write

The CPU asserts this signal to indicate a write operation. This signal can be sampled
when CPUASTART* is sampled low. This signal is active during the address phase.
CPUWR* is used in transfers initiated by the CPU.

Chapter 8 CPU Bus

8-9

CPUTSIZE[1:0] CPU transfer size

While driven by the CPU, these signals indicate the size of the transfer in the current
CPU initiated bus cycle. They are driven during the address phase and can be sampled
starting at the edge where CPUASTART* is sampled low.

Table 8-3. CPU Transfer Size

CPUTSIZE[1:0] Transfer Size
00 1 Quadword (Single Cycle)
11 4 Quadwords

SYSTSIZE[2:0] System transfer size

While driven by the system, these signals indicate the size of the transfer in the current
system bus cycle. They are driven during the address phase and can be sampled starting
at the edge where SYSASTART* is sampled low.

CPUASTART* CPU address start

Driven by the CPU, it indicates the start of the address phase. Address, byte enable, and
control signals (CPUADDR[31:4], CPUBE[15:0]*, CPURD*, CPUWR*, and CPUTSIZE)
can be sampled to determine the type of cycle requested starting where CPUASTART* is
sampled low. CPUASTART* is driven active for only one cycle.

SYSASTART* System address start

SYSASTART* is driven by the system; it indicates the start of the address phase. Address,
byte enable, and control signals can be sampled to determine the type of cycle requested
starting where SYSASTART* is sampled low. SYSASTART* is driven active for only one
cycle.

SYSAACK* System address acknowledge

This signal is an input to all the agents on the CPU Bus indicating that address and con-
trol signals have been sampled by the slave. The master terminates the address phase one
cycle after sampling SYSAACK* low.

CPUDATA[127:0] CPU data bus

This is a 128-bit data bus output from the CPU.

SYSDATA[127:0] System data bus

This is the 128-bit data bus input to all devices on the CPU Bus.

Chapter 8 CPU Bus

8-10

CPUDSTART* CPU data start

During read/write operations, this output from the CPU indicates the start of data phase.
For CPU write operations, the slave can sample data from the bus one cycle after CPUD-
START* has been asserted. For CPU read operations, the slave can output data on the bus
any cycle after the cycle CPUDSTART* has been asserted.

SYSDSTART* System data start

During read/write operations, this output from the system indicates the start of data
phase. Data transfer can begin one cycle after SYSDSTART* has been asserted. For DMA
cycles, if the slave, providing the data, cannot supply data in the next cycle after the as-
sertion of SYSDSTART*, it is the responsibility of the designer to come up with a new
DMA protocol.

SYSDACK* System data acknowledge

This signal is an input to all the agents on the bus indicating the valid status of data on
the bus. During read cycles, it indicates read data are available on the bus to be sampled
by the master. During write cycles, it indicates the slave has sampled the data. This sig-
nal should be asserted for each data transfer during burst operations. During read trans-
actions, data are sampled one cycle after SYSDACK* has been asserted. During write
transactions, the master drives new data on the bus one cycle after detecting SYSDACK*
low.

BUSERR* Bus error

This signal is an input to the CPU and the DMAC which indicates that a bus error has oc-
curred during the transaction. BUSERR* serves to terminate the bus protocol and return
bus ownership to the CPU.

INT[1:0]* Interrupt request lines

These signals are interrupt inputs to the CPU.

SIOINT* Serial I/O interrupt request

This line provides the serial I/O interrupt from the I/O controller.

NMI* Non-maskable interrupt

Non-maskable interrupt input to the CPU.

SYSBIGENDIAN Big Endian enable

This input signal is sampled during cold reset and make CPU to operate as big endian
when it is asserted. The input level of this signal must not be changed during the opera-
tion.

Chapter 8 CPU Bus

8-11

CPCOND0 Coprocessor conditions

These lines are an input to the CPU as test conditions for some of the branch instructions.

RESET* Reset

Input to the CPU. When this line is asserted, the CPU, DMAC and slave devices execute a
reset.

CPUCLK CPU clock

CPU clock

BUSCLK Bus clock

Bus clock: 1/2, 1/3 or 1/4 frequency of the CPUCLK.

AREQ* Address bus request

This signal is an output from the DMAC to the CPU. When it is asserted, the DMAC re-
quests the address bus mastership.

AGNT* Address bus grant

This signal is an output from the CPU to grant the bus mastership to the DMAC. This
signal is asserted in response to assertion of the AREQ* signal.

REL* Bus release request

This signal is asserted by the CPU to request that the current bus owner release the CPU
Bus.

Chapter 8 CPU Bus

8-12

8.4 Overview of CPU Bus Operations
This section discusses CPU Bus operations; it covers processor requests, DMA operations,
and bus error operation.

In this section descriptions show CPU signals followed by the system lines, in parentheses,
onto which they are asserted. For example: CPUASTART* (SYSASTART*) means
CPUASTART* is asserted on the SYSASTART* line. Where a value is given, the bits
output by the CPU are shown, followed by the bits, in parentheses, on the system lines.
For example if we have 11 on CPUTSIZE[1:0], during a CPU bus cycle, then we will get
011 on the SYSTSIZE[2:0]. This will be shown as 11 (011).

8.4.1 CPU Bus Operations
The CPU Bus is different from conventional buses in that it allows pipelinepipelinepipelinepipeline operations. In
this case, pipeline implies up to two outstanding requests before any data transaction has
taken place. For instance, the CPU may issue two back-to-back read requests to main
memory before any data have been returned. Note that at any time, there can only be two
outstanding requests on the bus. The master requiring more than two operations has to
wait until the first request has been serviced completely prior to issuing the third one.

8.4.2 Processor Requests
The CPU issues single requests, burst requests or a series of requests to other agents on
the bus. These requests are referred to as processor requests initiated through the CPU
Bus interface.

The processor requests are in response to the following system events:

• Load miss
• Store miss
• Write-back buffer writes (dirty data cache lines, uncached writes, etc.)
• Uncached loads and uncached accelerated loads
• Instruction miss and uncached instruction fetch

Processor read/write requests can be a burst, quadword, or partial quadword of data to
and from the main memory or any other system resources. A processor-initiated burst is
always 4 quadwords.

8.4.2.1 Read Requests

The CPU initiates read requests by driving address and control on the bus and asserting
CPUASTART* (SYSASTART*) to indicate valid address and control. The CPU will keep
driving address and control until the slave device has acknowledged the address phase by
asserting address acknowledge, SYSAACK*. For burst reads, the CPU drives CPUTSIZE
(SYSTSIZE) to 11 (011) to indicate burst reads. The CPU also indicates that it is ready to
accept read data by asserting CPUDSTART* (SYSDSTART*). The slave device returns the
requested data on the data bus by asserting SYSDACK*,,,, data acknowledge.

Chapter 8 CPU Bus

8-13

8.4.2.2 Write Requests

The CPU initiates write requests by driving address and control on the bus and asserting
CPUASTART* (SYSASTART*). The CPU also drives data on the bus and indicates that by
asserting CPUDSTART* (SYSDSTART*).... The slave device accepts the address and data
by asserting SYSAACK* and SYSDACK*, respectively. Burst writes are indicated by
driving CPUTSIZE (SYSTSIZE) to 11 (011) during the address phase.

8.4.3 Bus Error Operations
Bus error occurs when the CPU or DMA initiates cycles but there are no devices on the
CPU Bus responding to the cycles. The absence of response to either the address phase or
the data phase will cause the bus error condition. The bus error is always imprecise.

When bus error occurs, all the agents including the CPU, DMAC, and slave devices on the
CPU Bus will terminate the current bus cycle.

In the case where CPU is the initiator of the cycle, there can be two types of bus error:

• Data load/store bus error
• Instruction fetch bus error

Bus error sets the corresponding exception bit in the CAUSE register. Subsequently, the
CPU will jump to the proper error handler for the examination of the exception. However,
the bus error exception is imprecise. There is no guarantee that the CPU can recover from
this error condition.

In case the DMAC is the initiator of the cycle, the types of bus error depends on the im-
plementation of the DMAC. After bus error occurs, the DMAC will release the bus master-
ship back to the CPU and assert interrupt or NMI to the CPU. The interrupt or NMI rou-
tine will then handle the bus error condition for the DMAC.

Chapter 8 CPU Bus

8-14

8.5 CPU Bus Transaction Protocols and Timing
This section describes transaction protocols and the timing for the following CPU Bus op-
erations:

• Arbitration
• CPU single operations (one quadword)
• CPU burst operations (four quadwords)
• CPU non-pipelined single operations (one quadword)
• CPU non-pipelined burst operations (four quadwords)
• Bus error operations

8.5.1 Arbitration Operations
An arbiter is required to mediate between devices requesting the CPU Bus. The arbiter is
located in the CPU. The CPU is the defaultdefaultdefaultdefault bus master; AREQ* and AGNT* are both
deasserted during RESET.

A master other than the CPU may request the bus by asserting the request signal, AREQ*.
In response to the AREQ* signal, the CPU will issue the grant signal, AGNT*, to grant
the address bus to the requesting master. In the cycle AGNT* is sampled active by the bus
master, the master starts the address phases and deasserts AREQ* in the beginning of
the last address phase. When the corresponding data phases commences, the CPU or the
requesting master starts the data transfers depending on the DMA transfer. Data phases
follow the exact order of address phases. The arbitration signals are shown in Figure 8-4.

CPU Bus Master

AREQ*

AGNT*

REL*

CPU Bus

Figure 8-4. Connection of Arbitration Signals

The arbitration priority in using the CPU Bus is that the DMAC always has higher priori-
ty than the CPU. When both the CPU and the DMAC arbitrate for the CPU Bus, the arbi-
ter grants the bus mastership to the DMAC. The CPU can assert REL* to the DMAC in an
effort to get the bus ownership back from the DMAC. The CPU will proceed with the
transfer once the DMAC has released the CPU Bus.

The arbitration cycles and protocol are shown in Figure 8-5. In response to the DMAC asserting its
request AREQ*, the arbiter asserts AGNT* in cycle 3 which is the arbitration cycle. The DMAC
samples AGNT* asserted and begins its address phases. When the DMAC asserts to begin the last
address phase, it deasserts its request line AREQ* in cycle 4. The arbiter then waits for the
SYSAACK* cycle to deassert AGNT* to release bus mastership back to the CPU.

Chapter 8 CPU Bus

8-15

Figure 8-5. Arbitration Protocol

8.5.1.1 Cycle Stealing

Cycle stealing refers to the CPU’s ability to preempt a master in order to perform a bus
operation. This operation could be either due to the write back buffer (WBB) being almost
full (having more than 64 bytes filled up) or the CPU needing to perform an instruction or
data read. These operations are collectively referred to as cycle stealing operations.

Figure 8-6 illustrates the cycle stealing protocol. The arbiter asserts the REL* (Release)
signal in response to the CPU’s request cycles. The master deasserts its request after
having finished its operations. When the master has begun the last address phase with
the master deasserts the AREQ* signal indicating to the arbiter that the bus will be relin-
quished; as indicated in cycle 9. When the address phase ends, the address bus is returned
to the CPU by the deassertion of AGNT* in cycle 12. The arbiter deasserts REL* at the
same time AGNT* is deasserted. The data phases follow the same order as the address
phases.

Figure 8-6. Cycle Stealing Protocol

Master

BUSCLK

1 2 3 4 5 6 7 8 9

AREQ*

AGNT*

SYSADDR

SYSAACK*

CPU CPU

MasterCPU CPU

BUSCLK

SYSASTART*

1 3 5 7 9 11 13 15 17 19

AREQ*

AGNT*

SYSADDR

SYSAACK*

2 4 6 8 10 12 14 16 18

REL*

MasterCPU Master’s last address CPU

CPU CPU

SYSASTART*

Chapter 8 CPU Bus

8-16

8.5.2 CPU Single Operations
CPU Single operations transfer one quadword.

In single operations, the CPU drives the address, byte enables, and the read/write signals
and indicates their valid status by asserting CPUASTART* (SYSASTART*). The slave
samples valid address and control lines and responds by asserting SYSAACK*. In single
operations, CPUTSIZE (SYSTSIZE) is always 00 (000).

When the CPU detects SYSAACK* active and is ready to put another address on the bus,
it will start another address phase. The bus only supports two levels of address pipelining.
That means only two address phases can be outstanding before any data phase begins.

The CPU indicates that it is ready to accept/supply data by asserting CPUDSTART*
(SYSDSTART*) one cycle prior to actually accepting/supplying it. For read cycles, the
slave supplies the data and indicates that the data is ready by asserting SYSDACK*. For
write cycles, the CPU supplies data one cycle after CPUDSTART* (SYSDSTART*) is as-
serted, and the slave accepts the data by asserting SYSDACK*.

8.5.2.1 CPU Single Reads

The fastest CPU single read is 2 cycles. Address and data phases for AddrA illustrate the
fastest CPU single read cycle. The CPU asserts CPUASTART* (SYSASTART*) to begin
the address phase in cycle 1. The slave device asserts SYSAACK* in cycle 1 to indicate
that it has sampled the address. The CPU then begin another address phase in cycle 3.
The assertion of SYSDACK* by the slave device in cycle 1 triggers the CPU to sample
SYSDATA at the end of cycle 2.

Figure 8-7. CPU Single Reads

AddrA

1 2 3 4 5 6 7 8 9 10

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB AddrC AddrD

A B C D

0 0 0 0

Chapter 8 CPU Bus

8-17

8.5.2.2 CPU Single Writes

The fastest CPU single write is 2 cycles. Address and data phases for AddrA illustrate the
fastest CPU single write cycle. The CPU always drives data onto CPUDATA one cycle
after the assertion of CPUDSTART* (SYSDSTART*). For example, in, the CPU drives
CPUDATA in cycle 2 which is one cycle after the assertion of CPUDSTART*
(SYSDSTART*) in cycle 1. The slave device samples SYSDATA one cycle after the
assertion of SYSDACK*.

Figure 8-8. CPU Single Writes

AddrA

1 2 3 4 5 6 7 8 9 10

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB AddrC AddrD

A B C D

0 0 0 0

CPUDATA A B C D

Chapter 8 CPU Bus

8-18

8.5.2.3 CPU Single Read-Write-Read-Write Cycles

All adjacent address phases are read-write or write-read cycles. AddrA is a read address
and AddrB is a write address, and so on.

Figure 8-9. CPU Single Read-Write-Read-Write Cycles

AddrA

1 2 3 4 5 6 7 8 9 10

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB AddrC AddrE

A B C D

0 0 0

CPUDATA B D

AddrD

0 0

Chapter 8 CPU Bus

8-19

8.5.3 CPU Burst Operations
CPU Burst operations transfer four quadwords. In burst operations, the CPU drives the
address and control signals and indicates their validity by asserting CPUASTART*
(SYSASTART*). The slave samples valid address and control lines and asserts SYSAACK*
to acknowledge the address phase. The address phase is the cycles from CPUASTART*
(SYSASTART*) asserted to one cycle after SYSAACK* is asserted.

When the CPU detects SYSAACK* active and has another address ready, it will start ano-
ther address phase.

The CPU indicates that it is ready to accept/supply data by asserting CPUDSTART*
(SYSDSTART*) one cycle prior to actually accepting/supplying it. For read cycles, the
slave supplies the data and indicates that data are valid by asserting SYSDACK* one cy-
cle prior to the data being available. For write cycles, the CPU supplies data one cycle af-
ter CPUDSTART* (SYSDSTART*) is asserted, and the slave accepts the data by asserting
SYSDACK*. For burst cycles, there are many SYSDACK* for data transfer.

The CPUTSIZE (SYSTSIZE) indicates the number of quadwords in the transfer. The CPU
initiated cycles use only values of either 00 (for CPU Single operations) or 11 (for CPU
Burst operations), which are single and burst of 4 quadwords respectively.

8.5.3.1 CPU Burst Reads

The fastest CPU burst read is 5 cycles. Address and data phases for AddrA illustrate the
fastest CPU burst read cycle. There are four SYSDACK* sent by the slave device for every
CPU burst read cycle. The slave device asserts SYSDACK* in cycle 1, 2, 3, and 4 to indi-
cate that data can be sampled at the end of cycle 2, 3, 4, and 5 by the CPU.

Figure 8-10. CPU Burst Reads

AddrA

1 2 3 4 5 6 7 8 9 10

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB AddrC AddrD

A1 A2 A3

3 3 3 3

A4 B1 B2 B3 B4

Chapter 8 CPU Bus

8-20

8.5.3.2 CPU Burst Writes

The fastest CPU burst write is 5 cycles. Address and data phases for AddrA illustrate the
fastest CPU burst write cycle. After assertion of CPUDSTART* (SYSDSTART*) in cycle 1,
the CPU drives the first data on CPUDATA in cycle 2. As SYSDACK* is sampled asserted
in cycles 1, 2, 3, and 4, the CPU drives a new data on CPUDATA at the end of cycles 2, 3,
4, and 5.

Figure 8-11. CPU Burst Writes

AddrA

1 2 3 4 5 6 7 8 9 10

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB AddrC AddrD

A1 B1 B4 C1

3 3 3 3

CPUDATA A1 B1 B4 C1

A2

A2

A3

A3

A4

A4

B2

B2

B3

B3

Chapter 8 CPU Bus

8-21

8.5.3.3 CPU Burst Read-Write Cycles

All adjacent address phases are read-write or write-read cycles. AddrA is a read address
and AddrB is a write address, and so on.

Figure 8-12. CPU Burst Read-Write Cycles

8.5.3.4 CPU Burst Write-Read Cycles

All adjacent address phases are read-write or write-read cycles. AddrA is a write address
and AddrB is a read address, and so on.

Figure 8-13. CPU Burst Write-Read Cycles

AddrA

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB AddrC

A1 B1 B4 C1

3 3 3

CPUDATA B1 B4

A2 A3 A4 B2

B2

B3

B3

AddrA

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

AddrB AddrC

A1 B1 B4 C1

3 3 3

CPUDATA

A2 A3 A4 B2 B3

A1 A2 A3

SYSDACK*

C1A4

Chapter 8 CPU Bus

8-22

8.5.4 CPU Non-Pipeline Single Operations
The CPU Bus can support non-pipeline operations as well as pipeline operations. The
non-pipeline operations are done simply by delaying the assertion of SYSAACK* until the
last SYSDACK* of the bus transaction. The advantage of this is that the peripheral does
not need to save the current address; it just decodes the address on the address bus for the
current operation. Using this mode of operation simplifies the peripheral interfaces to the
CPU Bus but it degrades the system performance.

8.5.4.1 CPU Non-Pipeline Single Reads

All adjacent address phases are read cycles.

Figure 8-14. CPU Non-Pipeline Single Reads

AddrA

1 2 3 4 5 6 7 8 9 10

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB AddrC

A

0 0 0

B C

Chapter 8 CPU Bus

8-23

8.5.4.2 CPU Non-Pipeline Single Writes

All adjacent address phases are write cycles.

Figure 8-15. CPU Non-Pipeline Single Writes

8.5.5 CPU Non-Pipeline Burst Operations

8.5.5.1 CPU Non-Pipeline Burst Reads

All adjacent address phases are read cycles.

Figure 8-16. CPU Non-Pipeline Burst Reads

AddrA

BUSCLK

SYSWR*

SYSADDR

CPUDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB AddrC

A C

0 0 0

SYSDATA A

B

B C

1 2 3 4 5 6 7 8 9 10

AddrA

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB

A1 B4

3 3

B1

1 2 3 4 5 6 7 8 9 10

B2 B3A2 A4A3

Chapter 8 CPU Bus

8-24

8.5.5.2 CPU Non-Pipeline Burst Writes

All adjacent address phases are write cycles.

Figure 8-17. CPU Non-Pipeline Burst Writes

AddrA

BUSCLK

SYSWR*

SYSADDR

SYSDATA

SYSTSIZE

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

AddrB

A1 B4

3 3

B1

1 2 3 4 5 6 7 8 9 10

B2 B3A2 A3

CPUDATA A1 B4B1 B2 B3A2 A3

A4

A4

Chapter 8 CPU Bus

8-25

8.5.6 Bus Error Operations
Bus error occurs when there are no slave responding to the address or data phases of the
bus cycle. When bus error occurs, the current bus operation is terminated, and the system
proceeds with the next bus operation. Without bus error detection, the CPU Bus would
remain waiting indefinitely for the SYSAACK* or SYSDACK* signals.

Bus error is generated by the CPU Bus monitor logic. The monitor logic basically makes
sure that for both address and data phases in the current CPU Bus cycle, there are
SYSAACK* and SYSDACK*, respectively. In the case, when there is no SYSAACK* or
SYSDACK* or response to the address or data phase for a pre-defined period of time for
the current CPU Bus cycle, bus error is generated by asserting BUSERR* for one CPU
Bus clock. Bus error has higher priority than SYSAACK* or SYSDACK* if they are de-
tected in the same cycle.

Bus error is always asserted in reference to the data phase of the cycle. The exact timing
is the cycles from SYSDSTART* asserted to the cycle before the assertion of the next
SYSDSTART*. The bus error signal is sampled when the system is waiting for the asser-
tion of SYSDACK* and/or SYSAACK* of the operation corresponding to the current data
phase. For example, if the address phase of a certain cycle has no response from the slave
devices, the bus monitor logic will wait until the SYSDSTART* of the corresponding data
phase before generating the bus error. The bus monitor logic can generate the bus error
any time before the next data phase begins.

8.5.6.1 Bus Error Exceptions

As mentioned before, two operations can be pipelined on the CPU bus, and these two op-
erations can be initiated from either the CPU as master or the DMAC as master.

If the bus error occurs in the CPU initiated operation, the following occurs:

• a bus error exception due to instruction fetch or data access is generated
• the bus error instruction or data address is recorded in the BadPAddr Register

of COP0
• the Status.BEM bit is set (This bit is the bus error mask (BEM) in the COP0

Status Register).

Once a bus error occurs, any further bus errors are ignored until Status.BEM is cleared by
the bus error exception handler.

If the bus error occurs in the DMA initiated operation (DMA cycle), the DMAC will finish
the pending pipeline operations, disable itself, release the CPU Bus, and cause an inter-
rupt. The interrupt routine will then service and re-enable the DMAC accordingly. Table
8-4 summarizes the exception generation:

Table 8-4. Bus Error Exceptions

Operation with the Bus Error Exception Generated
CPU Initiated Instruction Fetch Bus Error Exception - Instruction Fetch
CPU Initiated Data Access Bus Error Exception - Data Access
DMA Cycle Interrupt Exception

Chapter 8 CPU Bus

8-26

8.5.6.2 CPU Bus Cycle Termination

Two pipeline operations can be in progress at any time, but if a bus error occurs, only the
operation with the bus error is terminated. That is, the occurrence of a bus error with one
master does not affect the program execution of another master. For example, if bus error
occurs when the first and second operations are initiated from the DMAC and CPU, re-
spectively, the CPU Bus will terminate the DMA operation and continue with the CPU
operation. Table 8-5 summarizes CPU Bus cycle sequence for all types of CPU Bus cycle
termination.

Table 8-5. Operation Termination Sequence

First Operation
with Bus Error

Second
Operation

CPU Bus Cycle Sequence

CPU Cycle #1 CPU Cycle #2 1. CPU Cycle #1 is terminated.
2. Bus Error Exception occurs.
3. CPU Cycle #2 continues on.

CPU Cycle #1 DMA Cycle #2 1. CPU Cycle #1 is terminated.
2. Bus Error Exception occurs.
3. DMA Cycle #2 continues on.

DMA Cycle #1 CPU Cycle #2 1. DMA Cycle #1 is terminated.
2. CPU Cycle #2 continues on.
3. DMA releases CPU Bus, disable itself (disable further requests
until the interrupt routine re-enable the DMAC), and generate an
interrupt.
4. CPU cycles continues on.

DMA Cycle #1 DMA Cycle #2 1. DMA Cycle #1 is terminated.
2. DMA Cycle #2 continues on.
3. DMAC releases CPU Bus, disable itself (disable further re-
quests until the interrupt routine re-enable the DMAC), and gener-
ate an interrupt.
4. CPU cycles continue on.

8.5.6.3 Bus Error Timing with No Pending Operation

If there are no pending operations on the bus, BUSERR* is ignored at all times.

8.5.6.4 Bus Error Timing with One Pending Operation

If there is one pending operation on the bus, BUSERR* is sampled while waiting for the
assertion of SYSAACK* or SYSDACK*. If BUSERR* is asserted, the bus cycle will con-
tinue as if the SYSAACK* and/or the last SYSDACK* has been asserted. Figure 8-18,
Figure 8-19, and Figure 8-20 illustrates the bus error associated with one pending opera-
tion. In these figures, BUSERR* is ignored before CPUDSTART* and after BUSERR* as-
serted because the bus is not waiting for the assertion of SYSAACK* nor SYSDACK*.

Chapter 8 CPU Bus

8-27

Figure 8-18. One Operation with BUSERR* as the Last SYSDACK*

Figure 8-19. One Operation with BUSERR* as SYSAACK*

Addr

BUSCLK

CPUASTART*

CPUADDR

CPUWR*

CPUTSIZE

SYSAACK*

CPUDATA

CPUDSTART*

SYSDACK*

BUSERR*

3

D0 D1 D2

Ignored Bus Error Detection Ignored

Addr

BUSCLK

CPUASTART*

CPUADDR

CPUWR*

CPUTSIZE

SYSAACK*

CPUDATA

CPUDSTART*

SYSDACK*

BUSERR*

3

D0 D1

Ignored Bus Error Detection Ignored

D2 D3

Chapter 8 CPU Bus

8-28

Figure 8-20. One Operation with BUSERR* as SYSAACK*
and the Last SYSDACK*

8.5.6.5 Bus Error Timing with Two Pending Operations

If there are two pending operations on the bus, BUSERR* is sampled while waiting for the
assertion of SYSDACK*. If BUSERR* is asserted, the bus cycle will continue as if the last
SYSDACK* has been asserted. The bus cycle will then proceed with the data phase of the
next operation. The bus error that occurred is for the first pending operation.

Figure 8-21 illustrates the bus error associated with two pending operations. In this figure,
BUSERR* is ignored after BUSERR* asserted because the bus is no longer waiting for the
assertion of SYSDACK* corresponding to operation AddrA with the bus error, and detec-
tion of bus error for operation AddrB has not started until the assertion of CPUDSTART*.

Addr

BUSCLK

CPUASTART*

CPUADDR

CPUWR*

CPUTSIZE

SYSAACK*

CPUDATA

CPUDSTART*

SYSDACK*

BUSERR*

3

D0 D1

Ignored Bus Error Detection Ignored

D2

Chapter 8 CPU Bus

8-29

Figure 8-21. Two Operations with Bus Error as the Last SYSDACK*

AddrB

BUSCLK

CPUASTART*

CPUADDR

CPUWR*

CPUTSIZE

SYSAACK*

CPUDATA

CPUDSTART*

SYSDACK*

BUSERR*

3

A0 A1

Ignored Bus Error Detection
Bus Error
Detection for B

AddrA

3

B0

Ignored

A2

Chapter 8 CPU Bus

8-30

Chapter 9 Performance Counter

9-1

9. Performance Counter

The performance counter provides the means for gathering statistical information about
the internal events of the CPU and the pipeline during program execution. The statistics
gathered during program execution aid in tuning the performance of hardware and
software systems based on the processor.

Chapter 9 Performance Counter

9-2

9.1 Overview
The performance counter consists of one control register and two counters. The control
register controls the functions of the monitor while the counters count the number of
events specified by the control register.

9.2 Performance Counters and Performance Control Registers
The Performance Counter Control Register, or PCCR, and Performance Counter Registers
PCR0 and PCR1 are mapped into COP0 Register 25. Both the register and counters are
read/write registers accessible by MTPC, MTPS, MTC0, MFPC, MFPS and MFC0
instructions. Each counter is capable of counting one event as specified by the control
register.

The format of the PCCR is shown in Figure 9-1, and the format of PCR0 and PCR1 is
shown in Figure 9-2.

31 30 29 28 27 26 25 24 23 22 21 20 19 15 14 13 12 11 10 9 5 4 3 2 1 0
C
T
E

0 0 0 0 0 0 0 0 0 0 0 EVENT1 U
1

S
1

K
1

E
X
L
1

0 EVENT0 U
0

S
0

K
0

E
X
L
0

0

1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1

Figure 9-1. Format of the Performance Counter Control Register PCCR

31 30 0

OVFL VALUE
1 31

Figure 9-2. Format of Performance Counter Registers PCR0 and PCR1

The interpretation of the PCCR register bits is as follows:

Table 9-1. PCCR Register Bits

Field Function Initial Value
CTE If 1, PCR0 and PCR1 counting and exception generation is enabled. 0

EVENT0/1 Event counted by PCR0/1; see Table 9-5 for details. Undefined
U0/1 PCR0/1 counts event EVENT0/1 when in User mode. Undefined
S0/1 PCR0/1 counts event EVENT0/1 when in Supervisor mode. Undefined

K0/1 PCR0/1 counts event EVENT0/1 when in non-exception Kernel
mode; i.e. with both STATUS.EXL and STATUS.ERL set to 0. Undefined

EXL0/1 PCR0/1 counts event EVENT0/1 when in Level 1 exception handler. Undefined

Chapter 9 Performance Counter

9-3

9.2.1 Accessing Counters and Registers
The counter control register PCCR and the two performance counter registers PCR0 and
PCR1 are accessed by using MTC0* and MFC0* instructions. All three registers are
mapped to COP0 register 25. Table 9-2 illustrates how these registers are written by using
the MTC0 instruction, and Table 9-3 illustrates the encoding of the MFC0 instructions
used to read the registers.
Table 9-4 show special mnemonics to access the performance Counters and Registers.

Table 9-2. Writing Performance Counters and Registers using MTC0

OpCode[15:11] OpCode[1:0] Operation
11001 00 Move to Counter Control Register
11001 01 Move to Performance Counter Register 0
11001 10 unused
11001 11 Move to Performance Counter Register 1

Table 9-3. Reading Performance Counters and Registers using MFC0

OpCode[15:11] OpCode[1:0] Operation
11001 00 Move from Counter Control Register
11001 01 Move from Performance Counter Register 0
11001 10 unused
11001 11 Move from Performance Counter Register 1

Table 9-4. Mnemonics to Access the Performance Counters and Registers

MTPC Move to Performance Counter
MTPS Move to Performance Event Specifies
MFPC Move from Performance Counter
MFPS Move from Performance Event Specifies

* MTPC, MTPS, MFPC and MFPS are the special encoding of MTC0 and MFC0.

Chapter 9 Performance Counter

9-4

9.2.2 State of Performance Counter Control Registers Upon Reset
The CTE bit of the Performance Counter Control Register PCCR is initialized to 0 upon
reset. This prevents event counting and interrupt generation until the control registers
are initialized. It also allows a precise way for counters to be initialized by software; see
the section 9.3.2 for more details. Note that the remaining bits of PCCR and both registers
PCR0 and PCR1 must be initialized by software.

Chapter 9 Performance Counter

9-5

9.3 Counter Operation
The performance counters PCR0 and PCR1 increment by 1 whenever their corresponding
count event occurs, and the counter is enabled. The count event for PCR0 is specified by
PCCR.EVENT0 and the count event for PCR1 is specified by PCCR.EVENT1. The
encoding of the EVENT field is specified in Table 9-5, and discussed in detail later. A
counter is enabled only when both of the following conditions are satisfied:

1. The global counter enable flag PCCR.CTE is set to 1, and

2. The current privilege mode matches the permitted privilege mode for each
counter. The values in PCCR.U0, PCCR.S0, PCCR.K0, and PCCR.EXL0 specify the
permitted privilege modes for PCR0 and PCCR.U1.
PCCR.S1, PCCR.K1, and PCCR.EXL1 specify the permitted privilege modes for
PCR1. For example, if the current privilege mode is SUPERVISOR, PCR0 will
operate only if PCCR.S0 is set to 1. Note that there is no “ERL0” or “ERL1” flag in
PCCR. This is because counters are unconditionally disabled when in level 2
handlers.

Chapter 9 Performance Counter

9-6

9.3.1 Counter Events
A counter increments if it is enabled and its trigger event occurs. The permissible values
for PCCR.EVENT0 and PCCR.EVENT1 are as shown in Table 9-5 below. The events are
described in Section.9.3.1.1Event Descriptions

Table 9-5. Counter Events

Event Counter 0 Counter 1
0 reserved Low-order branch issued
1 Processor cycle Processor cycle
2 Single instruction issue Dual instruction issue
3 Branch issued Branch mispredicted
4 BTAC miss JTLB miss
5 ITLB miss DTLB miss
6 I$ miss D$ miss
7 DTLB accessed WBB single request unavailable
8 Non-blocking load/store WBB burst request unavailable
9 WBB single request WBB burst request almost full
10 WBB burst request WBB burst request full
11 CPU address bus busy CPU data bus busy
12 Instruction completed Instruction completed
13 Non-BDS instruction completed Non-BDS instruction completed
14 reserved COP1 instruction completed
15 Load completed Store completed
16 No event No event

17-31 reserved reserved

Chapter 9 Performance Counter

9-7

9.3.1.1 Event Descriptions

In event descriptions, the word ‘branch’ (for example, ‘branch issued’, or ‘branch miss-
predicted’) means any ‘transfer of control’ instruction that is subject to prediction (that is,
all the conditional branch instructions, J, and JAL). The JR, JALR, ERET, SYSCALL,
BREAK, and TRAP instructions are not included.

Branch issued This event is triggered whenever a branch is issued to a functional
pipe. Note that a branch that is issued in a pipelined
implementation may get canceled if an instruction prior to it
signals an exception.

Branch
mispredicted

This event is triggered whenever the predicted branch address
(taken or not-taken) is incorrect. Note that a branch that is issued
in a pipelined implementation may get canceled if an instruction
prior to it signals an exception.

BTAC miss This event is triggered whenever the instruction address lookup
into the BTAC fails. Counts low-order (even) branch instructions
that miss the BTAC. Note that high-order (odd) branch does not
refer the BTAC.

COP1
instruction
completed

This event is triggered when a COP1 instruction completes. The
event is signaled even if the COP1 instruction completes
successfully, but appears in the branch delay slot of a branch-
likely instruction and is therefore nullified.

CPU address
bus busy

Generates a signal once every BUSCLK (not CPU clock) that the
CPU address bus is unavailable. The CPU address bus is
considered unavailable whenever it is busy, or when two addresses
have been issued but the data for the first address has yet to
return.

Data cache miss This event is triggered whenever a data cache miss is detected.
See Table 9-6. for the D$ miss definition.

Table 9-6. Definition of Data Cache Miss

Access DCE Page Attr. Hit/Miss

0 Uncached, UCA, Cached Miss

Uncached, UCA Miss
Load

1 Cached Hit/Miss

0 Uncached, UCA, Cached Hit

Uncached, UCA HitStore
1 Cached Hit/Miss

0 Uncached, UCA, Cached Uncount *

Uncached, UCA Uncount *Pref
1 Cached Hit/Miss

In this event, the data cache miss is defined as any load/store/pref
instructions which may generate bus read operations to get missed data from
external memory.

* Prefetch to the Uncached or UCA page is considered as nop.

Chapter 9 Performance Counter

9-8

DTLB accessed Barring canceled instructions, this event counts the total number
of executed loads and stores. Thus, ‘data cache miss’ divided by
‘DTLB accessed’ provide a good estimate of the D miss rate
(assuming no uncached loads/stores occur). Also, ‘DTLB miss’
divided by ‘DTLB accessed’ provides the DTLB miss rate. DTLB is
accessed even when unmapped page is accessed in case that minor
revision number is 0x10 or later.

DTLB Miss This event is triggered whenever a DTLB miss is detected. DTLB
is accessed even when unmapped page is accessed in case that
minor revision number is 0x10 or later.

Dual instruction
issued

This event is signaled whenever both functional pipes of the C790
are issued instructions*. The event counter is incremented by 1.

Instruction
cache miss

This event is triggered whenever an instruction cache miss is
detected.

Instruction
completed

This event triggers when an instruction completes. Note that some
instructions (e.g. SYSCALL, TEQ, TEQI, etc.) signal exceptions as
a normal part of their operation. Such instructions are considered
complete whether or not the “normal” exception was raised.
Therefore, an “instruction complete” event is signaled even if a
TEQ succeeds (i.e. raises a Trap exception). However, if a “true”
exception occurs (e.g. a counter exception is signaled while the
TEQ is executing), the instruction is canceled and no “instruction
complete” signal is generated. Similarly, an instruction in the
branch delay slot (BDS) of a branch-likely instruction is counted
as complete even if the BDS instruction is nullified. If the BDS
instruction is canceled because of a “true” exception, no
“instruction completed” event is signaled.

C790 Implementation Note: Up to two instructions can complete
every cycle in the C790. When two instructions do complete, the
event counter is incremented by 2.

ITLB miss This event is triggered whenever a ITLB miss is detected.

JTLB miss This event is triggered whenever a JTLB miss is detected.

Load completed This event triggers when a load instruction completes. Note that
the event is signaled even if the load appears in the branch delay
slot of a branch-likely instruction that is not taken and is therefore
nullified.

Low-order
branch issued

Counts the numbers of branches that were issued that appeared in
the low-order (even) position of an instruction pair fetch. This
count is needed since only these branches are subject to BTAC
lookup.

No event This “event” effectively disables the corresponding counter. It is
useful principally if only one of the two counters need be activated.

Non-BDS
instruction
completed
(for stepping)

This event triggers when an instruction that does not have a
branch delay slot completes. In particular, it does not trigger when
a branch or jump instruction completes. However, it does trigger
when the instruction in the branch delay slot of the branch or
jump completes. In the case of a branch-likely instruction, the
instruction in the branch delay slot triggers the event even if this
instruction is nullified. Note: this event is useful for stepping over
instructions.

* (Dual instruction issued) *2 + (Single instruction issued) = instruction issued

(Instruction issued) − (instruction completed) = instruction canceled

Chapter 9 Performance Counter

9-9

Non-blocking
load/store
(1st cache miss):

This event is signaled whenever a cached load/store/pref
instruction misses on the Data Cache and there is no pending
data cache miss, UCAB miss and uncached load.

Processor cycle This event triggers on every processor clock cycle.

Single
instruction
issued

This event is signaled whenever only one of the functional pipes
of the C790 is issued an instruction*.

Store completed This event triggers when a store instruction completes. Note that
the event is signaled even if the store appears in the branch delay
slot of a branch-likely instruction that is not taken and is
therefore nullified.

WBB Single
Request

A non-burst request was made to the WBB.

WBB Burst
Request

A burst request was made to the WBB.

WBB Single
Request
unavailable

A non-burst request was made to the WBB, but there were
insufficient free entries in the WBB to service it. All 8 entries are
used at that time.

WBB Burst
Request
unavailable

A burst request was made to the WBB, but, the WBB was
completely full, or there were not enough to service the request. 5,
6, 7, 8 entries are used at that time.

WBB Burst
Request almost
full

A burst request was made to the WBB, and even though there
were free entries, there were not enough to service the request. 5,
6, 7 entries are used at that time.

WBB Burst
Request full

A burst request was made to the WBB, but the WBB was
completely full. All 8 entries are used at that time.

* (Dual instruction issued) *2 + (Single instruction issued) = instruction issued

(Instruction issued) − (instruction completed) = instruction canceled

Chapter 9 Performance Counter

9-10

9.3.2 Handling Performance Counter Exceptions
A performance counter exception is detected by an instruction if the following condition
holds true:
~STATUS.ERL && PCCR.CTE && (CTR0.OVFL || CTR1.OVFL)

Note that software should not rely on the exception occurring if the instruction is nullified;
i.e. it appears in the branch delay slot of a branch likely instruction that is not taken.

C790 Implementation Note: C790 implementation always counts events that occur within
nullified instructions.

The instruction detecting a counter exception is canceled by the exception, and instruction
execution continues as follows:
if (in branch delay slot) {
 ErrorEPC = PC - 4;
 CAUSE.BD2 = 1;
}
else {
 ErrorEPC = PC;
 CAUSE.BD2 = 0;
}
if (STATUS.DEV)
 PC = 0xBFC00280; // Uncached counter xcp handler
else
 PC = 0x80000080; // “Normal” counter xcp handler
STATUS.ERL = 1;
CAUSE.EXC2 = 2; // Counter exception

The description above makes use of the BD2 and EXC2 fields in the CAUSE register. Both
are fields newly introduced in the C790 and occupy the bit positions shown below.

0 0

0123451112131415161718

0

272829

B
D
2

30

B
D

31

0

25

0

26

0

24

0

23

0

22

0

21

0

2019

I
P
2

10

I
P
3

0
I
P
7

CE 0

9 8

0

7 6

EXCEXC2 0

S
I

O
P

0 0

Figure 9-3. CAUSE Register Fields

C790 Programming Note: Note that the “normal” exception entry point is in kseg0 space.
That is, the address is unmapped and the caching policy is determined by CONFIG.K0. If
you don’t want to disturb the cache while counting and stepping, kseg0 should be
configured in “uncached” mode. If cache data preservation is secondary to counter
exception servicing performance counter overflow, kseg0 should be configured in “cached”
mode.

Chapter 9 Performance Counter

9-11

9.3.3 Priority of Counter Exceptions
Counter exceptions have the highest priority after cold reset and NMI. If a cold reset
occurs the processor is initialized – so a simultaneous counter exception is discarded. If an
NMI occurs, the NMI handler is entered with either PCR0.OVFL or PCR1.OVFL (or both)
set to 1, and ErrorEPC pointing at the instruction causing the counter overflow.
(ErrorEPC is used because NMI is handled as a level 2 exception.) Once the NMI handler
exits, the instruction that caused the overflow is re-executed. However, since PCR0.OVFL
or PCR1.OVFL is 1, the instruction is canceled once more and the counter exception
handler is entered.

9.3.4 Initializing Counters
Let us look at the code sequence needed to initialize counters and activate them. In the
example below, PCR0 is set up to count clocks in all operating modes and report a counter
exception after the count exceeds 231. CTR1 is set up to count stores while in supervisor
mode only, and report a counter exception after the count exceeds 231. The code must be
executed while in level 2 exception mode (ERL=1).
STATUS.ERL = 1; // Set ERL (to inhibit counting)
ErrorEPC = <target instruction where counting is to start>

PCR0 = 0; // Init CTR0, and …
PCCR.EVENT0 = 1; // … set up to count clocks …
PCCR.U0 = 1; // … in all privilege modes
PCCR.S0 = 1;
PCCR.K0 = 1;
PCCR.EXL0 = 1;

PCR1 = 0; // Init PCRT1, and …
PCCR.EVENT1 = 15; // … set up to count completed stores …
PCCR.U1 = 0; // … while in supervisor mode
PCCR.S1 = 1;
PCCR.K1 = 0;
PCCR.EXL1 = 0;

PCCR.CTE = 1; // Enable global counter flag
ERET // Execute ERET to clear ERL -
 // counting begins with ERET’s target
 // Note that the ERET instruction also
 // guarantees that the COP0 state
 // updated (e.g. CCR) is valid.

Chapter 9 Performance Counter

9-12

9.3.5 The Note to Read Counters
Whenever you want to read a counter by MTC0 or MTPC, be sure that any counting
events must NOT occur, otherwise you may get wrong number. For example, counter for
TLB event should be read in the unmapped area, that of instruction completion event
should be read in the ERL=1 (level 2 exception) area or other disabled area.

It is a implement-dependent that when the event is counted. It depends on the number of
the pipeline stages and so on.

To write a robust code among silicon versions and mask versions, you read the counters
after flushing the pipeline by SYNC.P instruction. C790 is a pipeline processor. It is
required for the instruction completion type event.

It is a nature of event counting that some inaccuracy exists. You don’t need to be
surprised if different number is observed in different version of silicon/mask.

Chapter 10 Floating-Point Unit, CP1

10-1

10. Floating-Point Unit, CP1 (Option)

This chapter describes the floating-point operations, including the programming model,
instruction set and formats.

The floating-point operations fully conform to the requirements of ANSI/IEEE Standard
754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

Chapter 10 Floating-Point Unit, CP1

10-2

10.1 Overview
All floating-point instructions, as defined in the MIPS ISA for the floating-point
coprocessor, CP1, are processed by the other hardware unit that executes integer
instructions.

The floating point execution unit can be disabled by the coprocessor usability CU bit
defined in the CP0 Status register.

10.2 Floating Point Register

10.2.1 Floating-Point General Registers (FGRs)
CP1 has a set of Floating-Point General Purpose registers (FGRs) that can be accessed in
the following ways:

• As 32 general purpose registers (32 FGRs), each of which is 32 bits wide when the FR
bit in the CPU Status register equals 0; or as 32 general purpose registers (32 FGRs),
each of which is 64-bits wide when FR equals 1. The CPU accesses these registers
through move, load, and store instructions.

• As 16 floating-point registers (see the next section for a description of FPRs), each of
which is 64-bits wide, when the FR bit in the CPU Status register equals 0. The FPRs
hold values in either single- or double-precision floating-point format. Each FPR
corresponds to adjacently numbered FGRs as shown in Figure 10-1.

• As 32 floating-point registers (see the next section for a description of FPRs), each of
which is 64-bits wide, when the FR bit in the CPU Status register equals 1. The FPRs
hold values in either single- or double-precision floating-point format. Each FPR
corresponds to an FGR as shown in Figure 10-1.

Chapter 10 Floating-Point Unit, CP1

10-3

Floating-point
Registers (FPR)

(FR = 0)

Floating-Point
General Purpose Registers

Floating-point
Registers (FPR)

(FR = 1)

Floating-Point
General Purpose Registers

31 (FGR) 0 63 (FGR) 0
(least) FGR0 FPR0 FGR0

FPR0
(most) FGR1 FPR1 FGR1
(least) FGR2 FPR2 FGR2

FPR2
(most) FGR3 FPR3 FGR3

• •
• •
• •

(least) FGR28 FPR28 FGR28
FPR28

(most) FGR29 FPR29 FGR29
(least) FGR30 FPR30 FGR30

FPR30
(most) FGR31 FPR31 FGR31

Floating-point
Control Registers

(FCR)
Control/Status Register Implementation/Revision Register

31 (FCR31) 0 31 (FCR0) 0

Figure 10-1. FP Registers

Chapter 10 Floating-Point Unit, CP1

10-4

10.2.2 Floating-Point Registers (FPRs)
The FPU provides:

• 16 Floating-Point registers (FPRs) when the FR bit in the Status register equals 0, or

• 32 Floating-Point registers (FPRs) when the FR bit in the Status register equals 1.

These 64-bit registers hold floating-point values during floating-point operations and are
physically formed from the General Purpose registers (FGRs). When the FR bit in the
Status register equals 1, the FPR references a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-point format. If the FR
bit equals 0, only even numbers (the least register) can be used to address FPRs. When
the FR bit is set to a 1, all FPR register numbers are valid.

If the FR bit equals 0 during a double-precision floating-point operation, the general
registers are accessed in double pairs. Thus, in a double-precision operation, selecting
Floating-Point Register 0 (FPR0) actually addresses adjacent Floating-Point General
Purpose registers FGR0 and FGR1.

10.2.3 Floating-Point Control Registers
The MIPS RISC architecture defines 32 floating-point control registers (FCRs); the C790
processor implements two of these registers: FCR0 and FCR31. These FCRs are described
below:

• The Implementation/Revision register (FCR0) holds revision information.

• The Control/Status register (FCR31) controls and monitors exceptions, holds the
result of compare operations, and establishes rounding modes.

• FCR1 to FCR30 are reserved.

Table 10-1 lists the assignments of the FCRs.

Table 10-1. Floating-Point Control Register Assignments

FCR Number Use
FCR0 Coprocessor implementation and revision register
FCR1 to FCR30 Reserved
FCR31 Rounding mode, cause, trap enables, and flags

Chapter 10 Floating-Point Unit, CP1

10-5

Implementation and Revision Register (FCR0)Implementation and Revision Register (FCR0)Implementation and Revision Register (FCR0)Implementation and Revision Register (FCR0)

The read-only Implementation and Revision register (FCR0) specifies the implementation
and revision number of CP1. This information can determine the coprocessor revision and
performance level, and can also be used by diagnostic software.

Figure 10-2 shows the layout of the register; Table 10-2 describes the Implementation and
Revision register (FCR0) fields.

Implementation/Revision Register (FCR0)
31 16 15 8 7 0

0 Imp Rev
16 8 8

Figure 10-2. Implementation/Revision Register

Table 10-2. FCR0 Fields

Field Description Initial value
Imp Implementation number 0x38
Rev Revision number in the form of y. x Revision Number
0 Reserved. Returns zeroes when read.

The revision number is a value of the form y. x, where:

• y is a major revision number held in bits 7:4.

• x is a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, there is not guarantee
that changes to its chips are necessarily reflected by the revision number, or that changes
to the revision number necessarily reflect real chip changes. For this reason revision
number values are not listed, and software should not rely on the revision number to
characterize the chip.

IEEE Standard 754IEEE Standard 754IEEE Standard 754IEEE Standard 754

IEEE Standard 754 specifies that floating-point operations detect certain exceptional
cases, raise flags, and can invoke an exception handler when an exception occurs. These
features are implemented in the MIPS architecture with the Cause, Enable, and Flag
fields of the Control/Status register. The Flag bits implement IEEE 754 exception status
flags, and the Cause and Enable bits implement exception handling.

Chapter 10 Floating-Point Unit, CP1

10-6

Control/Status Register (FCR31Control/Status Register (FCR31Control/Status Register (FCR31Control/Status Register (FCR31))))

The Control/Status register (FCR31) contains control and status information that can be
accessed by instructions in either Kernel or User mode. FCR31 also controls the
arithmetic rounding mode and enables User mode traps, as well as identifying any
exceptions that may have occurred in the most recently executed floating-point instruction,
along with any exceptions that may have occurred without being trapped.

Figure 10-3 shows the format of the Control/Status register, and Table 10-3 describes the
Control/Status register fields. Figure 10-4 shows the Control/Status register Cause, Flag,
and Enable fields.

Control/Status Register (FCR31)
31 25 24 23 22 18 17 12 11 7 6 2 1 0

0 FS C 0
Cause

EVZOUI
Enables
VZOUI

Flags
VZOUI

RM

7 1 1 5 6 5 5 2

Figure 10-3. FP Control/Status Register Bit Assignments

Table 10-3. Control/Status Register Fields

Field Description
FS When set, denormalized results can be flushed instead of causing

an unimplemented operation exception.
C Condition bit. See description of Control/Status register Condition

bit.
Cause Cause bits. See Figure 10-4 and the description of Control/Status

register Cause, Flag, and Enable bits.
Enables Enable bits. See Figure 10-4 and the description of Control/Status

register Cause, Flag, and Enable bits.
Flags Flag bits. See Figure 10-4 and the description of Control/Status

register Cause, Flag, and Enable bits.
RM Rounding mode bits. See Table 10-5 and the description of

Control/Status register Rounding Mode Control bits.

Chapter 10 Floating-Point Unit, CP1

10-7

Bit# 17 16 15 14 13 12
E V Z O U I

Bit# 11 10 9 8 7
V Z O U I

Bit# 6 5 4 3 2
V Z O U I

Inexact Operation
Underflow

Overflow
Division by Zero

Invalid Operation
Unimplemented Operation

Cause
Bits

Enable
Bits

Flag
Bits

Figure 10-4. Control/Status Register Cause, Flag, and Enable Fields

Control/StatusControl/StatusControl/StatusControl/Status Register Register Register Register FS Bit FS Bit FS Bit FS Bit

The FS bit enables the flushing of denormalized values. When the FS bit is set and the
Underflow and Inexact Enable bits are not set, denormalized results are flushed instead of
causing an Unimplemented Operation exception. Results are flushed to either 0 or the
minimum normalized value, depending upon the rounding mode (see Table 10-4 below),
and the Underflow and Inexact of the Cause and Flag bits are set.

Table 10-4. Flush Values of Denormalized Results

Flushed Result Rounding ModeDenormalized
Result RN RZ RP RM

Positive +0 +0 +2Emin +0
Negative -0 -0 -0 -2Emin

Control/Status Register Condition BitControl/Status Register Condition BitControl/Status Register Condition BitControl/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is stored at bit 23, the
Condition bit. The C bit is set to 1 if the condition is true; the bit is cleared to 0 if the
condition is false. Bit 23 is affected only by compare and CTC1 instructions.

Chapter 10 Floating-Point Unit, CP1

10-8

Control/StatusControl/StatusControl/StatusControl/Status Register Register Register Register Cause, Flag, and Enable Fields Cause, Flag, and Enable Fields Cause, Flag, and Enable Fields Cause, Flag, and Enable Fields

Figure 10-4 illustrates the Cause, Flag, and Enable fields of the Control/Status register.
The Cause and Flag fields are updated by all conversion, computational (except MOV. fmt),
CTC1, reserved, and unimplemented instructions. All other instructions have no affect on
these fields.

Cause BitsCause BitsCause BitsCause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in Figure
10-4, which reflect the results of the most recently executed floating-point
instruction. The Cause bits are a logical extension of the CP0 Cause register; they
identify the exceptions raised by the last floating-point operation. If the
corresponding Enable bit is set at the time of the exception a floating-point
exception is raised and trapped by CPU. If more than one exception occurs on a
single instruction, each appropriate bit is set.

The Cause bits are updated by most floating-point operations. The Unimplemented
Operation (E) bit is set to 1 if software emulation is required, otherwise it remains 0.
The other bits are set to 0 or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception. Within the set of floating-point
instructions that update the Cause bits, the Cause field indicates the exceptions
raised by the most-recently-executed instruction.

When a floating-point exception is taken, no results are stored, and the only state
affected is the Cause bit.

Enable BitsEnable BitsEnable BitsEnable Bits

A floating-point exception is generated any time a Cause bit and the corresponding
Enable bit are set. A floating-point operation that sets an enabled Cause bit forces
an immediate floating-point exception, as does setting both Cause and Enable bits
with CTC1.

There is no enable for Unimplemented Operation (E). An Unimplemented exception
always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear the
enabled Cause bits with a CTC1 instruction to prevent a repeat of the exception
trapping. Thus, User mode programs can never observe enabled Cause bits set; if
this information is required in a User mode handler, it must be passed somewhere
other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no floating-point
exception occurs and the default result defined by IEEE 754 is stored. In this case,
the exceptions that were caused by the immediately previous floating-point
operation can be determined by reading the Cause field.

Chapter 10 Floating-Point Unit, CP1

10-9

Flag BitsFlag BitsFlag BitsFlag Bits

The Flag bits are cumulative and indicate the exceptions that were raised by the
operations that were executed since the bits were explicitly reset. Flag bits are set
to 1 if an IEEE 754 exception is raised, otherwise they remain unchanged. The Flag
bits are never cleared as a side effect of floating-point operations; however, they can
be set or cleared by writing a new value into the Status register, using a CTC1
instruction.

When a floating-point exception is trapped, the flag bits are not set by the
hardware; floating-point exception software is responsible for setting these bits
before invoking a user handler.

Control/StatusControl/StatusControl/StatusControl/Status Register Register Register Register Rounding Mode Control Bits Rounding Mode Control Bits Rounding Mode Control Bits Rounding Mode Control Bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM) field.

As shown in Table 10-5, these bits specify the rounding mode that CP1 uses for all
floating-point operations.

Table 10-5. Rounding Mode Bit Decoding

Rounding
ModeRM

(1:0)
Mnemonic Description

0 RN Round result to nearest representable value;
round to value with least-significant bit 0
when the two nearest representable values
are equally near.

1 RZ Round toward 0: round to value closest to
and not greater in magnitude than the
infinitely precise result.

2 RP Round toward +∞: round to value closest to
and not less than the infinitely precise result.

3 RM Round toward −∞: round to value closest to
and not greater than the infinitely precise
result.

10.2.4 Accessing the FP Control and Implementation/Revision
Registers

The Control/Status and the Implementation/Revision registers are read by a Move Control
From Coprocessor 1 (CFC1) instruction.

The bits in the Control/Status register can be set or cleared by writing to the register
using a Move Control To Coprocessor 1 (CTC1) instruction. The Implementation/Revision
register is a read-only register. There are no pipeline hazards (between any instructions)
associated with floating-point control registers.

Chapter 10 Floating-Point Unit, CP1

10-10

10.3 Floating-Point Formats
CP1 performs both 32-bit (single-precision) and 64-bit (double-precision) IEEE standard
floating-point operations. The 32-bit single-precision format has a 24-bit signed-
magnitude fraction field (f+s) and an 8-bit exponent (e), as shown in Figure 10-5.

31 30 23 22 0
s

Sign
e

Exponent
f

Fraction
1 8 23

Figure 10-5. Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction field (f+s) and
an 11-bit exponent, as shown in Figure 10-6.

63 62 5251 0
s

Sign
e

Exponent
f

Fraction
1 11 52

Figure 10-6. Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are composed of three
fields:

• sign field, s

• biased exponent, e = E + bias

• fraction, f = b1b2....bp-1

where bias = 127, p = 24 in single precision,

 bias = 1023, p = 53 in double precision

The range of the unbiased exponent E includes every integer between the two values Emin

and Emax inclusive, together with two other reserved values:

• Emin − 1 (to encode 0 and denormalized numbers)

• Emax + 1 (to encode ∞ and NaNs [Not a Number])

For single-and double-precision formats, each representable nonzero numerical value has
just one encoding uniquely.

For single-and double-precision formats, the value of a number, v, is determined by the
equations shown in Table 10-6.

Chapter 10 Floating-Point Unit, CP1

10-11

Table 10-6. Equations for Calculating Values in Single and Double-Precision Floating-Point Format

Equation Condition
v = NaN E = Emax+1 and f ≠ 0, regardless of s
v = (−1)s∞ E = Emax+1 and f = 0
v = (−1)s2E(1.f) Emin ≤ E ≤ Emax

 v = (−1)s2Emin(0.f) E = Emin−1 and f ≠ 0
 v = (−1)s0 E = Emin−1 and f = 0

For all floating-point formats, if v is NaN, the most-significant bit of f determines whether
the value is a signaling or quiet NaN: v is a signaling NaN if the most-significant bit of f is
set, otherwise, v is a quiet NaN.

Table 10-7 defines the values for the format parameters; minimum and maximum
floating-point values are given in Table 10-8.

Table 10-7. Floating-Point Format Parameter Values

Format
Parameter

Single Double
Emax +127 +1023
Emin −126 −1022
Exponent bias +127 +1023
Exponent width in bits 8 11
Integer bit hidden hidden
Fraction width in bits 23† 52†
Format width in bits 32 64

† Excluding the sign bit.

Table 10-8. Minimum and Maximum Floating-Point Values

Type Value
Float Minimum 1.40129846e-45

Float Minimum Norm 1.17549435e-38

Float Maximum 3.40282347e+38

Double Minimum 4.9406564584124654e-324

Double Minimum Norm 2.2250738585072014e-308

Double Maximum 1.7976931348623157e+308

Chapter 10 Floating-Point Unit, CP1

10-12

10.4 Binary Fixed-Point Format
Binary fixed-point values are held in 2’s complement format. Unsigned fixed-point values
are not directly provided by the floating-point instruction set. Figure 10-7 illustrates
binary word fixed-point format and Figure 10-8 illustrates binary long fixed-point format;
Table 10-9 lists the binary fixed-point format fields.

31 30 0
Sign Integer

1 31

Figure 10-7. Binary Word Fixed-Point Format

63 62 0
Sign Integer

1 63

Figure 10-8. Binary Long Fixed-Point Format

Field assignments of the binary fixed-point format are:

Table 10-9. Binary Fixed-Point Format Fields

Field Description
sign sign bit
integer integer value (2’s complement)

Chapter 10 Floating-Point Unit, CP1

10-13

10.5 Floating-Point Instruction Set Summary
Each instruction is 32 bits long, and aligned on a word boundary. This section describes
the overview of instructions for floating-point unit. A detailed description of each
instruction is provided in Appendix D.

10.5.1 Load, Store and Move Instructions (Table 10-10)
Load and Store instructions move data between memory and FPU general purpose
registers(FGR), and Move instructions move data directly between CPU and FPU general
purpose registers(FGR). These instructions are not perform format conversions and
therefore never cause floating-point exceptions. The instruction immediately following a
load can use the contents of the loaded register. However, in such case the hardware
interlocks, requiring additional real cycles. Thus, the scheduling of load delay slots is
required to avoid the interlocking.

Table 10-10. FPU Instruction Set (Optional): Load, Move and Store Instruction

Instruction Description Note
LWC1 Load Word to FPU (coprocessor 1) MIPS I
SWC1 Store Word from FPU (coprocessor 1) MIPS I
MTC1 Move Word to FPU (coprocessor 1) MIPS I
MFC1 Move Word from FPU (coprocessor 1) MIPS I
CTC1 Move Control Word to FPU (coprocessor 1) MIPS I
CFC1 Move Control Word from FPU (coprocessor 1) MIPS I
LDC1 Load Doubleword to FPU (coprocessor1) MIPS II
SDC1 Store Doubleword from FPU (coprocessor1) MIPS II
DMTC1 Move Doubleword to FPU (coprocessor1) MIPS III
DMFC1 Move Doubleword from FPU (coprocessor1) MIPS III

Chapter 10 Floating-Point Unit, CP1

10-14

10.5.2 Conversion Instructions (Table 10-11)
Conversion instructions perform conversion operations between the various data formats.

Table 10-11. FPU Instruction Set(Optional): Conversion Instruction

Instruction Description Note
CVT.S.fmt Floating-Point Convert to Single FP Format MIPS I
CVT.W.fmt Floating-Point Convert to Word Fixed-Point Format MIPS I
CVT.D.fmt Floating-Point Convert to Double FP Format MIPS I
ROUND.W.fmt Floating-point Round to Word Fixed-Point MIPS II
TRUNC.W.fmt Floating-point Truncate to Word Fixed-Point MIPS II
CEIL.W.fmt Floating-point Ceiling Convert to Word Fixed-Point MIPS II
FLOOR.W.fmt Floating-point Floor Convert to Word Fixed-Point MIPS II
CVT.L.fmt Floating-Point Convert to Long Fixed-Point Format MIPS III
ROUND.L.fmt Floating-point Round to Long Fixed-Point MIPS III
TRUNC.L.fmt Floating-point Truncate to Long Fixed-Point MIPS III
CEIL.L.fmt Floating-point Ceiling Convert to Long Fixed-Point MIPS III
FLOOR.L.fmt Floating-point Floor Convert to Long Fixed-Point MIPS III

10.5.3 Computational Instructions (Table 10-12)
Computational instructions perform arithmetic operations on floating-point values in the
FPU registers. These are two categories of computational instructions:

• 3-Operand Register-Type instructions, which perform floating-point addition,
subtraction multiplication, and division operations

• 2-Operand Register-Type instructions, which perform floating-point abusolute value,
move, negate, and square root operations.

Table 10-12. FPU Instruction Set(Optional): Computational Instruction

Instruction Description Note
ADD.fmt Floating-point Add MIPS I
SUB.fmt Floating-point Subtract MIPS I
MUL.fmt Floating-point Multiply MIPS I
DIV.fmt Floating-point Divide MIPS I
ABS.fmt Floating-point Absolute Value MIPS I
MOV.fmt Floating-point Move MIPS I
NEG.fmt Floating-point Negate MIPS I
SQRT.fmt Floating-point Square root MIPS II

Chapter 10 Floating-Point Unit, CP1

10-15

10.5.4 Compare and Branch Instructions (Table 10-13)
Compare instructions perform comparisons of the contents of registers and set a
conditional bit based on the results. Branch on FPU Condition instructions perform a
branch to the specified target if the specified coprocessor condition is met.

Table 10-13. FPU Instruction Set(Optional): Compare and Branch Instruction

Instruction Description Note
C.cond.fmt Floating-point Compare MIPS I
BC1T Branch on FPU True MIPS I
BC1F Branch on FPU False MIPS I

Chapter 10 Floating-Point Unit, CP1

10-16

Chapter 11 Floating-Point Exception

11-1

11. Floating-Point Exception (Option)

This chapter describes FPU floating-point exceptions, including FPU exception types,
exception trap processing, exception flags, saving and restoring state when handling an
exception, and trap handlers for IEEE Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle either the operands or
the results of a floating-point operation in its normal way. The FPU responds by
generating an exception to initiate a software trap or by setting a status flag.

Chapter 11 Floating-Point Exception

11-2

11.1 Introduction
This chapter describes floating-point exceptions, including FPU exception type, exception
trap processing, exception flags, saving and restoring state when handling an exception,
and trap handlers for IEEE Standard 754 exceptions.

11.2 Exception Types
The FP Control/Status register described in Chapter 10 contains an Enable bit for each
exception type; exception Enable bits determine whether an exception will cause the FPU
to initiate a trap or set a status flag.

• If a trap is taken, the FPU remains in the state found at the beginning of the
operation and a software exception handling routine executes.

• If no trap is taken, an appropriate value is written into the FPU destination register
and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

• Inexact (I)

• Underflow (U)

• Overflow (O)

• Division by Zero (Z)

• Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E). This exception
indicates the use of a software implementation. The Unimplemented Operation exception
has no Enable or Flag bit; whenever this exception occurs, an unimplemented exception
trap is taken.

Figure 11-1 shows the Control/Status register bits that support exceptions.

Bit # 17 16 15 14 13 12
E V Z O U I Cause Bits

Bit #
|

11
|

10
|
9

|
8

|
7

V Z O U I Enable Bits

Bit #
|
6

|
5

|
4

|
3

|
2

V Z O U I Flag Bits
|

Unimplemented

|
Invalid

|
Division by

Zero

|
Overflow

|
Underflow

|
Inexact

Figure 11-1. Control/Status Register Exception/Flag/Trap/Enable Bits

Chapter 11 Floating-Point Exception

11-3

11.3 Exception Trap Processing
When a floating-point exception trap is taken, the Cause register indicates the floating-
point coprocessor is the cause of the exception trap.

The Floating-Point Exception (FPE) code is used, and the Cause bits of the floating-point
Control/Status register indicate the reason for the floating-point exception. These bits are,
in effect, an extension of the system coprocessor Cause register.

11.4 Flags
A Flag bit is provided for each IEEE exception. This Flag bit is set to a 1 on the assertion
of its corresponding exception, without corresponding exception trap signaled.

The Flag bit is reset by writing a new value into the Status register; flags can be saved
and restored by software either individually or as a group.

When no exception trap is signaled, floating-point coprocessor takes a default action,
providing a substitute value for the exception-causing result of the floating-point
operation. The particular default action taken depends upon the type of exception. Table
11-1 lists the default action taken by the FPU for each of the IEEE exceptions.

Table 11-1.　Default FPU Exception Actions

Field Description Rounding
Mode Default action

I Inexact exception Any Supply a rounded result
RN Modify underflow values to 0 with the sign of the intermediate result
RZ Modify underflow values to 0 with the sign of the intermediate result

RP
Modify positive underflows to the format’s smallest positive finite
number; modify negative underflows to −0.

U Underflow exception

RM
Modify negative underflows to the format’s smallest negative finite
number; modify positive underflows to 0.

RN Modify overflow values to ∞ with the sign of the intermediate result

RZ
Modify overflow values to the format’s largest finite number with the sign
of the intermediate result

RP
Modify negative overflows to the format’s most negative finite number;
modify positive overflows to +∞

O Overflow exception

RM
Modify positive overflows to the format’s largest finite number; modify
negative overflows to −∞

Z Division by zero Any Supply a properly signed ∞

V Invalid operation Any
Supply 231 −1 result (Word Fixed-Point);
Supply 267 −1 result (Long Fixed-Point);
Otherwise supply a quiet Not a Number

Chapter 11 Floating-Point Exception

11-4

The FPU detects the eight exception causes internally. When the FPU encounters one of
these unusual situations, it causes either an IEEE exception or an Unimplemented
Operation exception (E).

Table 11-2 lists the exception-causing situations and contrasts the behavior of the FPU
with the requirements of the IEEE Standard 754.

Table 11-2.　FPU Exception-Causing Conditions

FPA Internal
Result

IEEE
Standard

754

Trap
Enable

Trap
Disable Notes

Inexact result I I I Loss of accuracy
Exponent overflow O, I (*1) O, I O, I Normalized exponent > Emax

Division by zero Z Z Z Zero is (exponent=Emin −1, mantissa=0)
Overflow on convert
to Integer

V V (*2) V (*2) Source out of integer range, ∞, NaN

Signaling NaN
source

V V V

Invalid operation V V V 0/0, etc.
Exponent underflow U E UI (*3) Normalized exponent < Emin

Denormalized or
QNaN

None E E
Denormalized is (exponent=Emin −1 and
mantissa <> 0)

(*1) The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is
disabled.

(*2) Some implementations such as TX49 trap as (E) and SW support is requred. In TX79
implementation there is NO SW support required.

(*3) Exponent underflow sets the U and I Cause bits if both the U and I Enable bits are not set and the
FS bit is set; otherwise exponent underflow sets the E Cause bit.

Chapter 11 Floating-Point Exception

11-5

11.5 FPU Exceptions
The following sections describe the conditions that cause the FPU to generate each of its
exceptions, and details the FPU response to each exception-causing condition.

Inexact Exception (I)Inexact Exception (I)Inexact Exception (I)Inexact Exception (I)

The FPU generates the Inexact exception if one of the following occurs:

• the rounded result of an operation is not exact, or

• the rounded result of an operation overflows, or

• the rounded result of an operation underflows and both the Underflow and Inexact
Enable bits are not set and the FS bit is set.

Trap Enabled Results: If Inexact exception traps are enabled, the result register is not
modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to the destination
register if no other software trap occurs.

Chapter 11 Floating-Point Exception

11-6

Invalid Operation Exception (V)Invalid Operation Exception (V)Invalid Operation Exception (V)Invalid Operation Exception (V)

Floating-Point format operationFloating-Point format operationFloating-Point format operationFloating-Point format operation

The Invalid Operation exception is signaled if one or both of the operands are invalid for
an implemented operation. When the exception occurs without a trap, the MIPS ISA
defines the result as a quiet Not a Number (QNaN) for Floating-Point format. The
invalid operations are:

• Addition or subtraction: magnitude subtraction of infinities, such as: (+ ∞) + (−∞) or
(−∞) − (−∞)

• Multiplication: 0 times ∞, with any signs

• Division: 0/0, or ∞/∞, with any signs

• Comparison of predicates involving ‘<’ or ‘>’ without ‘?’, when the operands are
unordered∗

• Any arithmetic operation, when one or both operands is a signaling NaN. A move
(MOV) operation is not considered to be an arithmetic operation, but absolute value
(ABS) and negate (NEG) are considered to be arithmetic operations.

• Comparison or Convertion From Floating-point Format on a signaling NaN.

• Square root: x , where x is less than zero.

Software can simulate the Invalid Operation exception for other operations that are
invalid for the given source operands. Examples of these operations include IEEE
Standard 754-specified functions implemented in software, such as Remainder: x REM
y, where y is 0 or x is infinite; conversion of a floating-point number to a decimal format
whose value causes an overflow, is infinity, or is NaN; and transcendental functions,
such as ln (−5) or cos−1 (3). Refer to Appendix D for examples or for routines to handle
these cases.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: A quiet NaN is delivered to the destination register if no other
software trap occurs.

Conversion to Integer formatConversion to Integer formatConversion to Integer formatConversion to Integer format

The Invalid Operation exception is also raised when the source operand is an Infinity
(∞) or NaN, or the correctly rounded integer result is outside of the representable range.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disable Results: The result value 231 −1 (for Word Fixed-Point) or 263 −1 (for
Long Fixed-Point) is delivered to the destination register if no
other software trap occurs.

∗ ‘<’, ‘>’ and ‘?’ are the notation in IEEE std 754.

‘?’ means ‘unordered.’ See Compare instruction in Appendix D.

Chapter 11 Floating-Point Exception

11-7

DivisionDivisionDivisionDivision-by-Zero Exception (Z)-by-Zero Exception (Z)-by-Zero Exception (Z)-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide operation if the
divisor is zero and the dividend is a finite nonzero number. Software can simulate this
exception for other operations that produce a signed infinity, such as In (0), sec (π/2), csc
(0), or 0-1

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly signed infinity.

Overflow Exception (O)Overflow Exception (O)Overflow Exception (O)Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded floating-point
result, with an unbounded exponent range, is larger than the largest finite number of the
destination format. (This exception also signals an Inexact exception.)

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by the rounding
mode and the sign of the intermediate result (see Table 11-3).

Table 11-3.　Values of Overflow Results

Flushed result Rounding ModeDenormalized
Result RN RZ RP RM

Positive +∞ +Emax +∞ +Emax
Negative −∞ −Emax −Emax −∞

Underflow Exception (U)Underflow Exception (U)Underflow Exception (U)Underflow Exception (U)

Two related events contribute to the Underflow exception:

• creation of a tiny nonzero result between ±2Emin which can cause some later exception
because it is so tiny

• extraordinary loss of accuracy during the approximation of such tiny numbers by
denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires they be
detected the same way for all operations.

Tininess can be detected by one of the following methods:

• after rounding (when a nonzero result, computed as though the exponent range were
unbounded, would lie strictly between ±2Emin)

• before rounding (when a nonzero result, computed as though the exponent range and
the precision were unbounded, would lie strictly between ±2Emin).

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

Chapter 11 Floating-Point Exception

11-8

• denormalization loss (when the delivered result differs from what would have been
computed if the exponent range were unbounded)

• inexact result (when the delivered result differs from what would have been computed
if the exponent range and precision were both unbounded).

The MIPS architecture requires that loss of accuracy be detected as an inexact result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the FS bit is not
set, then an Unimplemented exception (E) is generated, and the
result register is not modified and the source registers are
preserved.

Trap Disabled Results: If Underflow and Inexact traps are not enabled and the FS bit is
set, the result is determined by the rounding mode and the sign
of the intermediate result (See Table 10-4).

Unimplemented Instruction Exception (E)Unimplemented Instruction Exception (E)Unimplemented Instruction Exception (E)Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format code that has been
reserved for future definition sets the Unimplemented bit in the Cause field in the FPU
Control/Status register and traps. The operand and destination registers remain
undisturbed and the instruction is emulated in software. Any of the IEEE Standard 754
exceptions can arise from the emulated operation, and these exceptions are simulated.

The Unimplemented Instruction exception can also be signaled when unusual operands or
result conditions are detected that the implemented hardware cannot handle properly.
These include:

• Denormalized operand, except for Compare instruction

• Quiet Not a Number operand, except for Compare instruction

• Denormalized result or Underflow, when either Underflow or Inexact Enable bit is set
or the FS bit is not set.

• Reserved opcodes

• Unimplemented formats

• Operations which are invalid for their format (for instance, CVT.S.S)

NOTE: Denormalized and NaN operands are only trapped if the instruction is a convert or a
computational operation. A move opration does not trap if their operands are either
denormalized or NaNs.

The use of this exception for such conditions is optional; most of these conditions are
newly developed and are not expected to be widely used in early implementations.
Loopholes are provided in the architecture so that these conditions can be implemented
with assistance provided by software, maintaining full compatibility with the IEEE
Standard 754.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: This trap cannot be disabled.

Chapter 11 Floating-Point Exception

11-9

11.6 Saving and Restoring State
Sixteen doubleword† coprocessor load or store operations save or restore the coprocessor
floating-point register state in memory. The remainder of control and status information
can be saved or restored through CFC1/CTC1 instructions, and saving and restoring the
processor registers. Normally, the Control/Status register is saved first and restored last.

When state is restored, state information in the Control/Status register indicates the
exceptions that are pending. Writing a zero value to the Cause field of Control/Status
register clears all pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

11.7 Trap Handlers for IEEE Standard 754 Exceptions
The IEEE Standard 754 strongly recommends that users be allowed to specify a trap
handler for any of the five standard exceptions so that a software subroutine can return a
value to be used in stead of the exceptional operation’s result; the trap handler can either
compute or specify a substitute result to be placed in the destination register of the
operation.

By retrieving an instruction using the processor Exception Program Counter (EPC)
register, the trap handler determines:

• exceptions occurred during the operation

• the operation being performed

• the destination format

On Overflow or Underflow exceptions (except for conversions), and on Inexact exceptions,
the trap handler gains access to the correctly rounded result by decoding source register
field of the instruction code and simulating the operation in software.

On Overflow or Underflow exceptions caused by a floating-point conversion, on Invalid
Operation and on Division-by-Zero exceptions, the trap handler gains access to the
operand values by decoding the source register field of the instruction code.

The IEEE Standard 754 recommends that, if enabled, the overflow and underflow traps
take precedence over a separate inexact trap. This prioritization is accomplished in
software; hardware sets the bits for both the Inexact exception and the Overflow or
Underflow exception.

† 32 doublewords if the FR bit is set to 1.

Chapter 11 Floating-Point Exception

11-10

Chapter 12 PC Trace

12-1

12. PC Trace

This chapter describes the trace functions present on the C790.

The C790 supports real-time PC tracing. Pipeline status, target addresses of indirect
jumps, and exception vectors are made available on special signals. The executed
instruction sequence can be restored from signals and the source program.

The C790 also supports hardware breakpoints. The breakpoint facility is described in
Chapter 13.

Chapter 12 PC Trace

12-2

12.1 Real-Time PC Tracing
Trace information and non-sequential Program Counters are made available on special
signal lines of the CPU.

The following trace information is made available:

• Instruction being executed in pipeline 0
• Instruction being executed in pipeline 1
• Current execution status (Normal (sequential), Branch Taken, Jump Target,

Exception Target)

For Indirect jumps, the target address is also made available. For exception vectors, a code
for the exception vector address is made available.

12.1.1 Classification of Branch and Jump Instructions
In this chapter, branches and jumps are classified into three categories which are direct
jump, indirect jump and branch in order to explains the function of PC trace.
The classification is show in Table 12-1.

Table 12-1. Classification of Branch and Jump Instruction

Class Instruction
Jump

Direct Jump
Indirect Jump

Direct or Indirect Jump
J or JAL Instruction
JR, JALR or ERET Instruction

Branch Any of conditional branch Instruction

Chapter 12 PC Trace

12-3

12.1.2 PC Trace Signals
All PC trace signals operate at half the C790 CPU clock frequency using the BUSCLK
clock signal. Because of the half frequency operation there are pairs of signals which
indicate the status of execution within the CPU pipelines. Phase A signals show the status
corresponding to the even CPU clock cycle and Phase B signals show the status
corresponding to the odd CPU clock cycle.

As can be seen from the following figure the execution status of the CPU pipeline during
time 0 (all time references are in relation to the CPU clock) is put on the phase A signals
at the next rising edge of BUSCLK during time 2. Similarly the execution status of the
CPU pipeline during time 1 is put on the phase B signals.

1 2 3 4 5 6 7 8 9 100

A B A B A B A B A B A

Time

Phase

CPUCLK

BUSCLK

Phase A
Signals 0 2 4 6

Phase B
Signals 1 3 5 7

The following signals are made available for real-time PC tracing.

• P0EXEA* (Phase A Pipeline 0 Execution Status) Output

• P1EXEA* (Phase A Pipeline 1 Execution Status) Output

• JMPA* (Phase A Jump) Output

• P0EXEB* (Phase B Pipeline 0 Execution Status) Output

• P1EXEB* (Phase B Pipeline 1 Execution Status) Output

• JMPB* (Phase B Jump) Output

• TPCE* (Target PC Enable) Output

• TPC[3:0] (Target PC Bus) Output

(1) P0EXEA* (Phase A Pipeline 0 Execution Status) Output
P0EXEA indicates whether an instruction has completed execution without generating an
exception (retired) via Pipeline 0 during phase A.

0: An instruction was retired.
1: No instruction was retired.

Chapter 12 PC Trace

12-4

(2) P1EXEA* (Phase A Pipeline 1 Execution Status) Output
P1EXEA indicates whether an instruction retired via Pipeline 1 during phase A. Note if
this signal is asserted at the same time as P0EXEA* then two instructions were retired
simultaneously during phase A via pipelines 0 and 1 but there is no indication as to which
specific instruction was retired via which pipeline.

0: An instruction was retired.
1: No instruction was retired.

(3) JMPA* (Jump Phase A) Output
A jump was retired during phase A or a conditional branch instruction was retired and the
branch was taken during phase A. Note that exceptions do not assert this signal.

 0: Jump or conditional branch instruction was retired.
1: No Jump or conditional branch instruction was retired.

(4) P0EXEB* (Phase B Pipeline 0 Execution Status) Output
P0EXEB indicates whether an instruction retired via Pipeline 0 during phase B.

0: An instruction was retired.
1: No instruction was retired.

(5) P1EXEB* (Phase B Pipeline 1 Execution Status) Output
P1EXEB indicates whether an instruction retired via Pipeline 1 during phase B. Note if
this signal is asserted at the same time as P0EXEB* then two instructions were retired
simultaneously during phase B via pipelines 0 and 1 but there is no indication as to which
specific instruction was retired via which pipeline.

0: An instruction was retired.
1: No instruction was retired.

(6) JMPB* (Jump Phase B) Output
A jump was retired during phase B or a conditional branch instruction was retired and the
branch was taken during phase B. Note that exceptions do not assert this signal.

0: Jump or conditional branch instruction was retired.
1: No Jump or conditional branch instruction was retired.

Chapter 12 PC Trace

12-5

(7) TPCE* (Target PC Enable) Output
When this signal is asserted the TPC bus indicates the type of target PC that will be made
available.

0: TPC bus indicates type of target PC.
1: TPC bus has either the target PC or the exception vector address code
 or has no information.

The normal sequence of operation for the TPCE* and the TPC[3:0] signals is as follows:
First TPCE* is asserted and simultaneously TPC[3:0] contains information about the type
of the target PC (non-sequential PC). Next TPCE* is deasserted and either the target PC
for indirect jumps is made available on the TPC[3:0] bus or for exceptions an exception
vector address code is made available on the TPC[3:0] bus.

 (8) TPC[3:0] (Target PC) Output
TPC[3:0] either indicates the type of the target PC address or the target address of
indirect jump instructions or exception vector address codes.

TPCTPCTPCTPC[3:0] when TPCE[3:0] when TPCE[3:0] when TPCE[3:0] when TPCE* is asserted is asserted is asserted is asserted

When TPCE* is asserted the type of the target PC address is made available on
TPC[3:0]. Each bit of TPC[3:0] indicates a different type and multiple bits can be
active at the same time.

• TPC[0]: Jump Target during Phase A

When this signal is asserted it indicates that the target instruction of an
Indirect Jump instruction (includes JR, JALR and ERET) is retired during
Phase A. The target address is made available on TPC[3:0] in the next cycle if
neither TPC[2] or TPC[3] are asserted simultaneously with this signal.

• TPC[1]: Exception Target during Phase A

When this signal is asserted it indicates that the first instruction of an
exception handler is retired during Phase A. The exception vector address is
made available on TPC[3:0] in the next cycle if neither TPC[2] nor TPC[3] are
asserted simultaneously with this signal.

• TPC[2]: Jump Target during Phase B

When this signal is asserted it indicates that the target instruction of an
Indirect Jump instruction is retired during Phase B. The target address is
made available on TPC[3:0] in the next cycle.

• TPC[3]: Exception Target during Phase B

When this signal is asserted it indicates that the first instruction of an
exception handler is retired during Phase B. The exception vector address is
made available on TPC[3:0] in the next cycle.

Chapter 12 PC Trace

12-6

TPCTPCTPCTPC[3:0] when TPCE[3:0] when TPCE[3:0] when TPCE[3:0] when TPCE* is deasserted is deasserted is deasserted is deasserted

When TPCE* is not asserted TPC[3:0] can be carrying the following three type of
information:

1. There is no meaningful information on TPC. This happens most of the time
when the program is executing sequentially.

2. The target address is made available because in the previous cycle TPCE*
was asserted and TPC[0] or TPC[2] were equal to 0. The target address starts
with the least significant four bits of the target instruction address (bits[5:2]).

3. An exception vector address code is made available because in the previous
cycle TPCE* was asserted and TPC[1] or TPC[3] were equal to 0. The
exception vector address code are shown in Table 12-2.

Table 12-2. Exception Vector Address Codes

Exception STATUS.BEV STATUS.DEV STATUS.EXL Vector
Address

Code
(TPC[3:0])

Reset, NMI x x x 0xBFC0 0000 8 (1000)
TLB Miss 1 x 0 0xBFC0 0200 12 (1100)
TLB Miss 0 x 0 0x8000 0000 0 (0000)
TLB Miss 1 x 1 0xBFC0 0380 15 (1111)
TLB Miss 0 x 1 0x8000 0180 3 (0011)
Debug & SIO x 1 x 0xBFC0 0300 14 (1110)
Debug & SIO x 0 x 0x8000 0100 2 (0010)
Performance
Counter

x 1 x 0xBFC0 0280 13 (1101)

Performance
Counter

x 0 x 0x8000 0080 1 (0001)

Interrupt 1 x x 0xBFC0 0400 9 (1001)
Interrupt 0 x x 0x8000 0200 4 (0100)
Common 1 x x 0xBFC0 0380 15 (1111)
Common 0 x x 0x8000 0180 3 (0011)

Chapter 12 PC Trace

12-7

12.1.3 Priority of Target Addresses
The target address for an indirect jump instruction or an exception vector address code is
made available on TPC[3:0]. For an indirect jump instruction it takes multiple cycles (8
BUSCLK cycles or 16 CPU clock cycles) for the complete target address to be made
available on the TPC[3:0] bus. As such multiple conditions can occur simultaneously and
there are certain priorities associated with putting out the target address. The rules
governing what is made available on the TPC[3:0] bus are listed below:

1. If a new indirect jump instruction is retired while the target address PC for a
previous indirect instruction is still being put out on TPC[3:0], the new indirect
jump instruction’s target PC will be signaled and start coming out on the
TPC[3:0] bus and the previous target PC output will be terminated.

2. If an exception is taken while the target address PC for a previous indirect
instruction is still being put out on TPC[3:0], the exception vector address code
will be signaled and start coming out on the TPC[3:0] bus and the previous
target PC output will be terminated

The rules are also described in the following flowchart.

New Indirect Jump
or Exception

Target Retired ?

Yes Previous Target
address is Being Output

Currently ?

Suspend Outputting
Previous Target
Address Output

Start Outputting
Target Address

of Jump

Terminate Outputting
Current PC Output

Yes

No No

Exception Indirect Jump

Previous Target
Address. Is Being Output

Currently ?

Output Exception
Target

Resume Outputting
Previous Target

Address

Output Exception
Target

Figure 12-1. Priority of Outputting Jump or Exception Target

Chapter 12 PC Trace

12-8

12.1.4 Examples of PC Tracing
The following sections contains examples of program execution and the corresponding
waveforms of the PC trace signals. Note that when two instructions are retired
simultaneously, just for the sake of illustration, it is indicated which instruction is
executed in which pipeline. In reality, in this case, it is not known which instruction is
retired from which pipeline.

Chapter 12 PC Trace

12-9

12.1.4.1 Sequential Execution

This is an example of sequential program execution. The program fragment is as follows:
mul
add
sub
lw r1
add
sub ,,r1
add
add

The PC trace signals for the program fragment are shown below:

A B A B A B A BPhase

CPUCLK

BUSCLK

mul add

mul sub add − − addPipe 0

add lw − sub addPipe 1

P0EXEA*

sublwP1EXEA*

addsubP0EXEB*

addaddP1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

Figure 12-2. Waveform for Sequential Excecution

Chapter 12 PC Trace

12-10

12.1.4.2 Conditional Branch

This is an example of program with conditional branch instructions. Both the branch
taken and not taken case is illustrated. The program fragment is as follows:

add
add
beq L0 # Not Taken
lw
add
beq L1 # Taken
add
....

L1: add
bne L2 # Taken
sll
....

L2: sub
sub

The PC trace signals for the program fragment are shown below:

A B A B A B A BPhase

CPUCLK

BUSCLK

add add

add add add − − addPipe 0

− beq lw − beq addPipe 1

P0EXEA*

beqlwP1EXEA*

addaddP0EXEB*

addbeqP1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

bne sub

sll sub

Taken

TakenNot Taken

bne

sll

sub

sub

beq bne

Figure 12-3. Waveform for Conditional Branch

Chapter 12 PC Trace

12-11

12.1.4.3 Indirect Jump (Target in Phase A)

This is an example of program with an indirect jump instruction which is retired during
phase B. The program fragment is as follows:

add
add
jr L1
lw
....

L1: xor
add
ori
ori
sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

xor

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add add − − xor oriPipe 0

− jr lw − add oriPipe 1

P0EXEA*

P1EXEA*

oriaddP0EXEB*

orijrP1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

sll sub

sw sub

Target

sll

sub

sub

addlw sw

jr

1110

TA[x:y] = Target address bit x to y

xor

TA[5:2] TA[31:30]

9 Bus Cycles

Figure 12-4. Waveform for Indirect Jump (Target in Phase A)

Chapter 12 PC Trace

12-12

12.1.4.4 Indirect Jump (Target in Phase B)

This is an example of program with an indirect jump instruction which is retired during
phase A. The program fragment is as follows:

add
add
jr L1
lw
....

L1: xor
add
ori
ori
sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add − − − − oriPipe 0

jr lw − xor add oriPipe 1

P0EXEA*

jrP1EXEA*

oriP0EXEB*

orixorP1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

sll sub

sw
Target

sll

sub

sub

add sw

TA[9:6] TA[31:30]

8 Bus Cycles

lw

jr

xor

1011 TA[5:2]

sub

Figure 12-5. Waveform for Indirect Jump (Target in Phase B)

Chapter 12 PC Trace

12-13

12.1.4.5 Indirect Jump (During Target PC Output)

This is an example of a program with two indirect jump instructions. While the target
address PC associated with the first indirect jump instruction is being put out the second
indirect jump instruction is retired. Thus the first target PC output is terminated and the
second target PC output is signaled and then made available. The program fragment is as
follows:

add
add
jr L1
lw
....

L1: xor
add
jr L2
add
....

L2 sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

TA[5:2]

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add add − − xor jrPipe 0

− jr lw − add addPipe 1

P0EXEA*

P1EXEA*

P0EXEB*

P1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

− −
Target

sll

add

TA[5:2]1110

− −

BA

sll sub

sw sub

Target

xor

lw sw

subjradd

subaddjr

jr jr

xor

1110

sw

Figure 12-6. Waveform for Indirect Jump (During Target PC Output)

Chapter 12 PC Trace

12-14

12.1.4.6 Exception (Target in Phase B)

This is an example of a program which generates an exception. The target instruction
(first instruction of the exception handler) retires in phase B. The program fragment is
shown below. The label ExHnd identifies the first instruction of the exception handler.

add
add
add
lw
teq # Generates exception
....

ExHnd: xor
add
sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

E.Code0111

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add add − − − xorPipe 0

− add lw − − addPipe 1

P0EXEA*

lwP1EXEA*

xorP0EXEB*

addP1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

sll sub

Exception
Target

sll

sub

sub

sw

add

xor

More stall cycles might be inserted.

sw sub

add

E.Code = Exception Vector Code

Figure 12-7. Waveform for Exception (Target in Phase B)

Chapter 12 PC Trace

12-15

12.1.4.7 Exception (During Target PC Output)

This is an example of a program which generates an exception while a target PC from an
earlier indirect jump instruction is being made available. The target PC output is
terminated and the exception vector address code is signaled and then made available.
The target instruction (first instruction of the exception handler) retires in phase B. The
program fragment is shown below. The label ExHnd identifies the first instruction of the
exception handler.

add
add
add
lw
teq # Generates exception
....

ExHnd: xor
add
sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

TA17:14

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add add − − − xorPipe 0

− add lw − − addPipe 1

P0EXEA*

lwP1EXEA*

xorP0EXEB*

addP1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

sll sub

Exception
Target

sll

sub

sub

sw

add

xor

0111 E.Code

More stall cycles might be inserted.

sw sub

add

TAxx:yy = Target Address bit xx to yy
E.Code = Exception Vector Code

TA21:18TA13:10

Figure 12-8. Waveform for Exception (During Target PC Output)

Chapter 12 PC Trace

12-16

12.1.4.8 Exception Generated by Branch or Jump Instruction

This is an example of a program in which an indirect jump instruction generates an
exception. As such the program jumps to the exception handler and the only thing
indicated is the exception vector address code and not the jump. The target instruction
(first instruction of the exception handler) retires in phase B. The program fragment is
shown below. The label ExHnd identifies the first instruction of the exception handler.

add
add
add
lw
jr # Generates an exception
nop # Branch delay slot
....

ExHnd: xor
add
sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

0111 E.Code

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add add − − − xorPipe 0

− add lw − − addPipe 1

P0EXEA*

lwP1EXEA*

xorP0EXEB*

addP1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

sll sub

Exception
Target

sll

sub

sub

sw

add

xor

More stall cycles might be inserted.

sw sub

add

E.Code = Exception Vector Code

Figure 12-9. Waveform for Exception Generated by Branch or Jump Instruction

Chapter 12 PC Trace

12-17

12.1.4.9 Exception Generated by Branch Delay Slot Instruction

This is an example of a program in which the branch delay slot instruction generates an
exception. As such the program jumps to the exception handler and the only thing
indicated is the exception vector address code and not the jump. The target instruction
(first instruction of the exception handler) retires in phase B. The program fragment is
shown below. The label ExHnd identifies the first instruction of the exception handler.

add
add
add
lw
jr
lw # Generates an exception
....

ExHnd: xor
add
sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

0111 E.Code

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add add jr − − xorPipe 0

− add lw − − addPipe 1

P0EXEA*

lwP1EXEA*

xorP0EXEB*

addP1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

sll sub

Exception
Target

sll

sub

sub

sw

add

xor

More stall cycles might be inserted.

sw sub

add

E.Code = Exception Vector Code

jr

jr

Figure 12-10. Waveform for Exception Generated by Branch Delay Slot Instruction

Chapter 12 PC Trace

12-18

12.1.4.10 Exception Generated by Target Instruction

This is an example of a program in which the target instruction of an indirect jump
generates an exception. As such the program jumps to the exception handler and the only
thing indicated is the exception vector address code and not the jump. The target
instruction (first instruction of the exception handler) retires in phase B. The program
fragment is shown below. The label ExHnd identifies the first instruction of the exception
handler.

add
add
add
lw
jr L1
nop
....

L1: lw # Generates an exception
and
....

ExHnd: xor
add
sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

E.Code

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add add jr nop − −Pipe 0

− add lw − − −Pipe 1

P0EXEA*

P1EXEA*

P0EXEB*

P1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

− xor

sll

0111

− add

BA

sll sub

sw sub

lw sw

subxoradd

subaddadd

xor

More stall cycles might be inserted.

jr

nop

jr

Figure 12-11. Waveform for Exception Generated by Target Instruction

Chapter 12 PC Trace

12-19

12.1.4.11 Back to Back Exceptions (Case I)

This is an example of a program in which two back to back exceptions are generated. The
program jumps to the first exception handler but then immediately jumps to the second
exception handler. The target instruction (first instruction of the second exception
handler) retires in phase A. The exception vector address code for the first handler is
never made available. The program fragment is shown below. The label ExHnd1 identifies
the first instruction of the first exception handler and the label ExHnd2 identifies the first
instruction of the second exception handler.

add
add # Generates the first exception
....

ExHnd1: xor # Generates the second exception
xor
....

ExHnd2: sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

E.Code

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add − − − − −Pipe 0

− − − − − −Pipe 1

P0EXEA*

P1EXEA*

P0EXEB*

P1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

− −

sll

− −

BA

sll sub

sw sub

sw

sub

sub

1101

sw

More stall cycles might be inserted.

Exception
Target

E.Code = Exception Vector Code

Figure 12-12. Waveform for Back to Back Exceptions (Case I)

Chapter 12 PC Trace

12-20

12.1.4.12 Back to Back Exceptions (Case II)

This is an example of a program in which two (all most) back to back exceptions are
generated. The program jumps to the first exception handler and then generates an
exception when executing the second instruction of the exception handler. It then jumps to
the second exception handler. The target instruction (first instruction of the first exception
handler) retires in phase A. As compared to the case discussed above the exception vector
address code for the both the handlers are made available. The program fragment is
shown below. The label ExHnd1 identifies the first instruction of the first exception
handler and the label ExHnd2 identifies the first instruction of the second exception
handler.

add
add # Generates the first exception
....

ExHnd1: xor
xor # Generates the second exception
....

ExHnd2: sw
sll
sub
sub

The PC trace signals for the program fragment are shown below:

A B A B A B A BPhase

CPUCLK

BUSCLK

add

add − − − xor −Pipe 0

− − − − − −Pipe 1

P0EXEA*

P1EXEA*

P0EXEB*

P1EXEB*

JMPA*

JMPB*

TPCE*

TPC[3:0]

BA

− −

sll

E.Code

− −

BA

sll sub

sw sub

sw

sub

sub

1101

sw

More stall cycles might be inserted.

Exception
Target

E.Code = Exception Vector Code

Exception
Target

xor

xor

1101 E.Code

Figure 12-13. Waveform for Back to Back Exceptions (Case II)

Chapter 13 Hardware Breakpoint

13-1

13. Hardware Breakpoint

This chapter describes hardware breakpoint functions for debugging present on the C790.

Chapter 13 Hardware Breakpoint

13-2

13.1 Hardware Breakpoint
C790 provides hardware breakpoint mechanism for debugging purpose. (In this section,
hardware breakpoint is sometimes referred to as “breakpoint”.) This function allows users
to set a instruction breakpoint and a data address/value breakpoint with signaling the
breakpoint event occurrence to external probe. The following summarizes the features of
the breakpoint function.

• Provides both instruction and data breakpointing in virtual address.

• Instruction address breakpoint with address masking.

• Data breakpoint with masking. Data breakpoint can be set by the following
events:

Address with masking

Value with masking

Read/write

• Independent exception event control for instruction and data.

• Individual event control by processor operating mode/exception level.

• Provides a trigger signal to external probes synchronized with the breakpointing
event.

Hardware breakpointing is implemented as a part of Coprocessor 0. Configuring the
breakpoint is done by setting 7 Breakpoint registers by special MTC0/MFC0 instructions.
Figure 13-1 shows the basic structure of the breakpoint hardware.
Breakpoint can generate breakpoint exception which is categorized in Level2 exception,
and has a dedicated exception vector. (See 5. Exception) This exception is only masked in
Level2 mode, and exception generation itself can be controlled by the Breakpoint Control
Register mentioned in the following section. Note that some of breakpoint exceptions are
imprecise, for instance, setting value breakpoint for load instruction is basically imprecise
because the load instruction may retire from the pipeline before actual acquisition of
memory contents. The following summarizes imprecise cases:

• All data value breakpoint on load instruction

• Data value breakpoint on SWC1 instruction

13.1.1 Hardware Breakpoint signal
To signal a breakpoint occurrence, the C790 activates a signal called TRIG, whenever a
trigger condition is met.

• TRIG (Trigger Output) Output

This signal is asserted for two BUSCLK cycles when a trigger condition is met.

Chapter 13 Hardware Breakpoint

13-3

Address / Value
Register

IAB
DAB
DVB

Mask

fetch PC
load/store address

load/store value

Mask

Mask Register
IABM

DABM
DVBM

= ?

Enable
Ctrl.

Enable
Ctrl.

Breakpoint Control BPC

Pipeline Control
(Exception Control)

Exception

Trigger to
external probe
(TRIG*)

Breakpoint
Event

Figure 13-1. Overall Structure of Hardware Breakpoint

13.2 Breakpoint Registers
Hardware breakpoint is comprised of 3 pairs of breakpoint registers and one control
register listed below. Each of breakpoint register pair includes one breakpoint value
register and one breakpoint mask register.

• Breakpoint Control Register (BPC)

• Instruction Address Breakpoint Registers

Instruction Address Breakpoint Register (IAB)

Instruction Address Breakpoint Mask Register (IABM)

• Data Address Breakpoint Registers

Data Address Breakpoint Register (DAB)

Data Address Breakpoint Mask Register (DABM)

• Data Value Breakpoint Registers

Data Value Breakpoint Register (DVB)

Data Value Breakpoint Mask Register (DVBM)

Chapter 13 Hardware Breakpoint

13-4

All 7 registers are 32-bit read/write and assigned to Coprocessor0 register 24. Therefore,
C790 provides extended MTC0 instructions for accessing these registers and it is
necessary to use these instructions to access these registers instead of the conventional
MTC0/MFC0 instructions. Table 13-1 and Table 13-2 summarizes the instructions for
accessing the registers.

Table 13-1. Set a new value into breakpoint registers

Mnemonic Operation
MTBPC Move to Breakpoint Control Register
MTIAB Move to Instruction Address Breakpoint Register
MTIABM Move to Instruction Address Breakpoint Mask Register
MTDAB Move to Data Address Breakpoint Register
MTDABM Move to Data Address Breakpoint Mask Register
MTDVB Move to Data Value Breakpoint Register
MTDVBM Move to Data Value Breakpoint Mask Register

Table 13-2. Get the value from breakpoint registers

Mnemonic Operation
MFBPC Move from Breakpoint Control Register
MFIAB Move from Instruction Address Breakpoint Register
MFIABM Move from Instruction Address Breakpoint Mask Register
MFDAB Move from Data Address Breakpoint Register
MFDABM Move from Data Address Breakpoint Mask Register
MFDVB Move from Data Value Breakpoint Register
MFDVBM Move from Data Value Breakpoint Mask Register

13.2.1 Breakpoint Control Register (BPC)
The BPC register contains enable bits and status bits for controling the breakpointing of
both instruction and data. This register consists of 5 parts of bit fields:

• Breakpoint overall control (bit [31:28])
These bits controls the operation mode of the breakpointing.

• Instruction breakpoint control (bit [26:23])
These bits specifies the processor mode that the instruction breakpoint is
enabled.

• Data breakpoint control (bit[21:18])
These bits specifies the processor mode that the data breakpoint is enabled.

• Signaling Control (bit[17:15])
These bits controls the occurrence of breakpoint exception / trigger generation
upon the breakpoint event.

• Breakpoint Status (bit[2:0])
These bits indicates the type of breakpoint event. This part is used to identify
which breakpoint event occurred in the breakpoint exception handler.

Chapter 13 Hardware Breakpoint

13-5

The following shows the detailed bitmap of BPC register.

D
R
B

D
W
B

00
I
A
B

012345691112131415161718

0

27

D
V
E

28

D
W
E

29

D
R
E

30

I
A
E

31

I
S
E

25

I
U
E

26

I
K
E

24

I
X
E

23

0

22

D
U
E

21

D
S
E

2019

0

10

0000 0 0 0 0 0

78

D
K
E

D
X
E

I
T
E

D
T
E

B
E
D

Table 13-3 describes the BPC register fields.

Table 13-3. BPC Register Fields

Field Bits Description Type Initial
Value

IAE 31 Instruction Address Enable. This bit enables/disables instruction
address breakpointing.
0: disable instruction address breakpointing
1: enable instruction address breakpointing

Read /
Write

0

DRE 30 Data Read Enable. This bit enables data load address breakpointing.
0: disable breakpointing on reads
1: enable breakpointing on reads

Read /
Write

0

DWE 29 Data Write Enable. This bit enables data store address breakpointing.
0: disable breakpointing on writes
1: enable breakpointing on writes

Read /
Write

0

DVE 28 Data Value Enable. This bit is valid only when DRE and/or DWE are
set to 1. When DVE is set to 1 data read breakpoints (DRE == 1) are
further qualified by the value of the data read, and data write
breakpoints (DWE == 1) are further qualified by the value of the data
written. Note that data value breakpoints for data reads are
imprecise. See section 13.1 (“Hardware Breakpoint”) for more details.

Read /
Write

Undefined

rsvd 27 Reserved - must be written as zeros by software. The processor
returns zeros in these bit positions when read.

Read 0

IUE 26 Instruction break - User Enable. This bit enables instruction address
breakpointing in (standard) user mode. This bit is only valid if IAE is
set to 1.
0: disable instruction address breakpointing in User mode
1: enable instruction address breakpointing in User mode

Read /
Write

Undefined

ISE 25 Instruction break - Supervisor Enable. This bit enables instruction
address breakpointing in supervisor mode. This bit is only valid if IAE
is set to 1.
0: disable instruction address breakpointing in Supervisor mode
1: enable instruction address breakpointing in Supervisor mode

Read /
Write

Undefined

IKE 24 Instruction break - Kernel Enable. This bit enables instruction address
breakpointing in non-exception kernel mode - i.e. when both
STATUS.EXL and STATUS.ERL are 0. This bit is only valid if IAE is
set to 1.
0: disable instruction address breakpointing in Kernel mode
1: enable instruction address breakpointing in Kernel mode

Read /
Write

Undefined

IXE 23 Instruction break - EXL mode Enable. This bit enables instruction
address breakpointing in exception kernel mode - i.e. when
STATUS.EXL is 1 and STATUS.ERL is 0. This bit is only valid if IAE
is set to 1.
0: disable instruction address breakpointing in EXL mode
1: enable instruction address breakpointing in EXL mode

Read /
Write

Undefined

rsvd 22 Reserved - must be written as zeros by software. The processor
returns zeros in these bit positions when read.

Read 0

Chapter 13 Hardware Breakpoint

13-6

Field Bits Description Type Initial
Value

DUE 21 Data break - User Enable. This bit enables data breakpointing in User
mode. This bit is only valid if DWE or DRE is set to 1.
0: disable data breakpointing in User mode
1: enable data breakpointing in User mode

Read /
Write

Undefined

DSE 20 Data break - Supervisor Enable. This bit enables data breakpointing in
Supervisor mode. This bit is only valid if DWE or DRE is set to 1.
0: disable data breakpointing in Supervisor mode
1: enable data breakpointing in Supervisor mode

Read /
Write

Undefined

DKE 19 Data break - Kernel Enable. This bit enables data breakpointing in
Kernel mode - i.e. when both STATUS.EXL and STATUS.ERL are 0.
This bit is only valid if DWE or DRE is set to 1.
0: disable data breakpointing in Kernel mode
1: enable data breakpointing in Kernel mode

Read /
Write

Undefined

DXE 18 Data break - EXL mode Enable. This bit enables data breakpointing in
Exception Kernel mode - i.e. when STATUS.EXL is 1 and
STATUS.ERL is 0. This bit is only valid if at least one of DRE or DWE
are set to 1.
0: disable data breakpointing in EXL mode
1: enable data breakpointing in EXL mode

Read /
Write

Undefined

ITE 17 Instruction Trigger Enable. This bit enables the generation of the
trigger signal when an instruction breakpoint occurs.
0: disable instruction breakpoint trigger
1: enable instruction breakpoint trigger

Read /
Write

Undefined

DTE 16 Data Trigger Enable. This bit enables the generation of the trigger
signal when an data breakpoint occurs.
0: disable data breakpoint trigger
1: enable data breakpoint trigger

Read /
Write

Undefined

BED 15 Breakpoint Exception Disable. This bit disables the entry into the
debug exception handler. Note that the setting of this bit does not
affect trigger signal generation.
0: enable entry into debug exception handler
1: disable entry into debug exception handler

Read /
Write

Undefined

rsvd 14 - 3 Reserved - must be written as zeros by software. The processor
returns zeros in these bit positions when read.

Read 0

DWB 2 Data Write Breakpoint. This status bit indicates whether a data
breakpoint has occurred on a write or not.
0: no data breakpoint has occurred on a write
1: data breakpoint has occurred on a write

Read /
Write

Undefined

DRB 1 Data Read Breakpoint. This status bit indicates whether a data
breakpoint has occurred on a read or not.
0: no data breakpoint has occurred on a read
1: data breakpoint has occurred on a read

Read /
Write

Undefined

IAB 0 Instruction Address Breakpoint. This status bit indicates whether an
instruction address breakpoint has occurred or not.
0: no instruction address breakpoint has occurred on a read
1: instruction address breakpoint has occurred on a read

Read /
Write

Undefined

Chapter 13 Hardware Breakpoint

13-7

13.2.2 Instruction Address Breakpoint Register (IAB) / Instruction
Address Breakpoint Mask Register (IABM)

31 2 1 0

IAB 0

Figure 13-2. Instruction Address Breakpoint Register

31 2 1 0

IABM 0

Figure 13-3. Instruction Address Breakpoint Mask Register

This register pair holds the instruction breakpointing address. Both the value in IAB
register and the current fetch PC are masked by the value in IABM. If the values are
equal, condition for instruction address breakpoint becomes true. As fetch PC is always
word-aligned, the bit 0 and bit 1 of these registers are fixed to zeros.

13.2.3 Data Address Breakpoint Register (DAB) /
Data Address Breakpoint Mask Register (DABM)

This register pair holds the data breakpointing address. Both the value in DAB register
and the destination for load/store operation are masked by the value in DABM. If the
values are equal, condition for data address breakpoint becomes true. These registers are
32-bit wide readable/writable.

31 0

DAB

Figure 13-4. Data Address Breakpoint Register

31 0

DABM

Figure 13-5. Data Address Breakpoint Mask Register

Chapter 13 Hardware Breakpoint

13-8

13.2.4 Data Value Breakpoint Register (DVB) /
Data Value Breakpoint Mask Register (DVBM)

This register pair holds the value for data value breakpointing. Both the value in DVB and
the lower 32 bits of load/store data are masked with the value in DVBM. If the values are
equal, condition for data value breakpoint becomes true. Note that enabling data value
breakpoint implies activating the data address breakpointing (setting either/both of
DRE/DWE bit in BPC), and therefore breakpoint event for data value only happens if both
condition for data address breakpoint and data value breakpoint becomes true.
 Note that the comparison of data value is always performed in 32bit regardless of the
width of load/store operation: the store value comes from GPR is truncated to 32bit value
for comparison and the load value is appropriately signextended or merged with the
contents of GPR (unaligned cases) and then the least significant 32-bits are used for
comparison. For instance, most significant (64+32) bits/32-bits are truncated on data value
comparison for LQ/SQ/LD/SD instructions, while the value from memory is sign-extended
to comprise a 32bit value for LB/LH instructions.

13.3 Setting Breakpoint
The following sections mention the details of breakpoint controls with some sample codes.
As C790 is a pipelined superscalar processor, several restrictions are applied in setting
breakpoint registers. The following is the main topic that has to be taken care of:

31 0

DVB

Figure 13-6. Data Value Breakpoint Register

31 0

DVBM

Figure 13-7. Data Value Breakpoint Mask Register

• Upon chainging the configuration of breakpointing, it is very likely that 3 or
more registers must be updated. However, the change is performed in pipelined
manner as C790 is pipelined processor. This potentially has possibility to create
a hazardous area in generating exception unconsciously.

• C790 does NOT wait for the data arrival on load operation. The instruction itself
may retire from the pipeline before storing the data into the registers, and the
occurrence of breakpointing event delays from the instruction completion. This
not only make some data value breakpoints imprecise, but also temporally
masks an occurrence of breakpointing event as following case: a data load
instruction that should cause data value breakpoint exception results in cache
miss. But in the next cycle, other level2 exception such as SIO interrupt had
been detected and the processor entered level2 before the acquisition of the data.
Under this scenario, data value exception will be delayed until the processor
returns from Level2 mode.

Chapter 13 Hardware Breakpoint

13-9

13.3.1 Sequence of Setting Breakpoint
In order to prevent spurious exception during reconfiguring the breakpoint, managing
breakpointing enable before and after the change is mandatory. One easy way is to change
the processor mode into Level2 to mask breakpoint exception unconditionally, but, this
has an side effect that the user segment becomes unmapped. Therefore, this section
mainly focuses on changing the configuration without changing the processor mode.
The following summarizes the sequence of changing breakpointing configuration.

1. Synchronize the pipeline

2. Disable the breakpoint exception that is going to be reconfigured

3. Synchronize the pipeline

4. Set appropriate data in Breakpoint register pairs

5. Set appropriate configuration into Breakpoint Control Register, including enabling
the break point exception.

6. Synchronize the pipeline

There are three synchronization points in the sequence: the first one is to ensure that
there is no pending breakpoint exception for consistency in the breakpoint exception
handler. The second one is right after disabling the breakpoint that is going to be
reconfigured. This separates the change in the control register from the change for other
breakpoint register so that programmer can safely change the breakpoint. The third
synchronization is after updating breakpoint control register. Since C790 issues the
instructions in in-ordered manner, changes for breakpoint register pair always precedes
the change in the control register. In this sense, there is no spurious exception without
this synchronization. However, in order to catch the breakpointing event right after
updating the control register, flushing the pipeline at this point is strongly recommended.
The first synchronized operation must be either of SYNC.P or SYNC.L operation
depending on the breakpoint that is going to be reconfigured. If it is instruction
breakpoint, SYNC.P is to be used and otherwise SYNC.L is to be used. For second and
third synchronization, SYNC.P is to be used.
The flow generating TRIG* and exception is shown in Figure 13-8, Figure 13-9, Figure
13-10. Figure 13-8 describes the flow hardware breakpoint encounts the breakpointing
event. Figure 13-9, and Figure 13-10 describe the flow how the exception and TRIG*
signal is asserted.
 The following shows some simple sample codes for configuring breakpoint registers.
Several programming notes/issues are put in the comments.

Chapter 13 Hardware Breakpoint

13-10

No

Breakpointing
Configuration

Check

Kernel (00b)

1 (Level2)

Start

In
Level2
Mode ?

In
Level1
Mode ?

Processor
Mode ?

I/DUE = ?

No
Breakpoint

Event

No

YesYes

I/DSE = ?

No
Breakpoint

Event

No

Yes

I/DKE = ?

No
Breakpoint

Event

No

Checking
Breakpoint

Event

No
Breakpoint

Event

Yes

I/DXE = ?

No
Breakpoint

Event

No
Breakpoint

Event

1 (Level1)

Supervisor (01b)

Status.KSU
(2bits)

Status.EXL

Status.ERL

User (10b)

Figure 13-8. Hardware Breakpoint detection flow (Setting)

Chapter 13 Hardware Breakpoint

13-11

Checking
Breakpoint

Event
(Instruction)

IAB = 1

Checking
Breakpoint

Event

Mask
Instruction
address

Yes

Equal ?

Mask
Value in

IAB

No
Breakpoint

Event
No

Yes

IAE = 1 ?
No

Breakpoint
Event

No

Signal
External
Trigger ?

Assert
TRIG*

Yes

Generate
Exception ?

Breakpoint
Exception

Check
Condition

Signal
Breakpoint

BPC.ITE = 1 ? No

Yes

(End)NoBPC.BED = 1 ?

Figure 13-9. Hardware Breakpoint detection flow (IAB)

Chapter 13 Hardware Breakpoint

13-12

Checking
Breakpoint

Event
(Data)

DWB = 1

Checking
Breakpoint

Event

Mask
Data

address

Yes

Equal ?

Mask
Value in

DAB

No
Breakpoint

Event
No

Yes

Check
Value
Also ?

No

Check
Condition
(Address)

Signal
Breakpoint

Mask
Data
Value

Yes

Equal ?

Mask
Value in

DVB

NoCheck
Condition

Yes

Read ?

Yes

DRE = 1 ?

Yes

DWE = 1 ?

No

DRB = 1

No
Breakpoint

Event
NoNo

BPC.DVE = 1 ?

Figure 13-10. Hardware Breakpoint detection flow (DAB/DVB) (1/2)

Chapter 13 Hardware Breakpoint

13-13

Signal
External
Trigger ?

Assert
TRIG*

Yes

Generate
Exception ?

Breakpoint
Exception

BPC.ITE = 1 ? No

Yes

(End)NoBPC.BED = 1 ?

No
Breakpoint

Event

Figure 13-10. Hardware Breakpoint detection flow (IAB) (2/2)

Chapter 13 Hardware Breakpoint

13-14

13.3.2 Instruction Breakpointing
The following code sets an instruction breakpoint from 0x1234_5600 to 0x1234_56ff, and
traps if the processor is either in user mode or in supervisor mode.

--
#
Setting Instruction address breakpoint from 0x1234_5600 to 0x1234_56ff
in user mode and supervisor mode
#
1st sync.
sync.p # A barrier to ensure there is no pending
 # instruction address breakpoint in pipe.
 # pipeline flusing works for this purpose.

At first, disable instruction breakpointing to avoid spurious exceptions.
The following uses conservative way not to break the configuration for
data breakpointing.
#
mfbpc $4 # get the value in BPC
bgez $4, 1f # skip following if (BPC[31] == 0)
nop # (bds)
li $5, (1 << 31) # IAE is in 31st bit of BPC
xor $4, $5, $4 # Resetting IAE bit to zero.
mtbpc $4 # reload BPC.

2nd sync.
sync.p # barrier to ensure the configuration change
 # of breakpoint function

1:
#
Reconfigure instruction breakpoint address.
Note that least significant 8 bits can be anything because it is masked
by IABM register anyway
#
li $4, 0x12345678
mtiab $4

#
Setting mask register. Masked if corresponding bit in mask register
is reset to zero.
#
li $5, 0xffffff00
mtiabm $5

#
Reconfigure instruction breakpoint. For better understanding, once
resetting all the bits for instructio breakpoint, and then sets new
config.
#
mfbpc $4

#
Reset IUE/ISE/IKE/ITE/IAB. Especially resetting IAB is important to
know the cause of next breakpoint exception correctly.
#
li $5, ~(\
 (1 << 26) # IUE \
 | (1 << 25) # ISE \
 | (1 << 24) # IKE \
 | (1 << 23) # IXE \
 | (1 << 17) # ITE \
 | (1 << 0) # IAB \
)
and $4, $4, $5

#
Set new configuration to BPC register.
Note that setting BPC after IAB/IABM is so important to avoid spurious
exception.
#

Chapter 13 Hardware Breakpoint

13-15

li $6, $6, \
 (\
 (1 << 31) # IAE = 1 to enable Inst. B.P. \
 | (1 << 26) # IUE = 1 to enable Inst. B.P in user mode. \
 | (1 << 20) # IUE = 1 to enable Inst. B.P in supv. mode. \
 | (1 << 15) # BED = 1 to enable generating exception. \
)
or $5, $4, $6
mtbpc $5

3rd sync.
Sync.p # Barrier to ensure the configuration change
--

Chapter 13 Hardware Breakpoint

13-16

13.3.3 Data Address Breakpointing
The following code sets a data address breakpoint from 0x1230_0000 to 0x1233_ffff for
both reading and writing, and traps if the processor is either in kernel mode(including
under level1).

--
#
Setting data address breakpoint from 0x1230_0000 to 0x1233_ffff
in kernel(normal,L1) mode
#
1st sync.
sync.l # A barrier to ensure there is no pending
 # data address breakpoint in pipe.
 # Must flush all buffers for load/store for this
 # purpose by SYNC.L
#
At first, reset data-breakpoint related bits to zeros.
Resetting DWB/DRB is important so that the hander can recognize the
next breakpoint exception correctly.
#
mfbpc $4 # load current configuration
li $5, ~(\
 (1 << 30) # DRE \
 | (1 << 29) # DWE \
 | (1 << 28) # DVE \
 | (1 << 21) # DUE \
 | (1 << 20) # DSE \
 | (1 << 19) # DKE \
 | (1 << 18) # DXE \
 | (1 << 16) # DTE \
 | (1 << 2) # DWB \
 | (1 << 1) # DRB \
)
and $4, $4, $5
mtbpc $4 # reload BPC.

2nd sync.
sync.p # barrier to ensure the configuration change
 # of breakpoint function
#
Reconfigure data breakpoint address.
Note that least significant 18 bits can be anything because it is masked
by DABM register anyway
#
li $6, 0x12305678
mtdab $6

#
Setting mask register. Masked if corresponding bit in mask register
is reset to zero.
#
li $5, 0xfffc0000
mtdabm $5

#
Set new configuration to BPC register.
Note that setting BPC after DAB/DABM is so important to avoid spurious
exception.
#
li $6, $6, \
 (\
 (1 << 30) # DRE = 1 to enable Data B.P on read \
 | (1 << 29) # DWE = 1 to enable Data B.P on write \
 | (1 << 19) # DKE = 1 to enable Data B.P in kern. mode. \
 | (1 << 18) # DXE = 1 to enable Data B.P under L1. \
 | (1 << 15) # BED = 1 to enable generating exception. \
)
or $5, $4, $6 # Note that $4 still holds the value used
 # on MTBPC.
mtbpc $5

Chapter 13 Hardware Breakpoint

13-17

3rd sync.
sync.p # Barrier to ensure the configuration change
--

Chapter 13 Hardware Breakpoint

13-18

13.3.4 Breakpointing by Data Address and Value
Setting Data Address and Value breakpoint is the same as Data Address breakpoint. The
following example is the same as the previous example except in that the trap only
happens if the data contains 0xCAFE in least significant 16 bits, and traps only on loading
data.

--
#
Setting data address/value breakpoint from 0x1230_0000 to 0x1233_ffff
with data that contains 0xCAFE in kernel(normal, L1) mode.
#
1st sync.
sync.l # A barrier to ensure there is no pending
 # data address breakpoint in pipe.
 # Must flush all buffers for load/store for this
 # purpose by SYNC.L
#
At first, reset data-breakpoint related bits to zeros.
Resetting DWB/DRB is important so that the hander can recognize the
next breakpoint exception correctly.
#
mfbpc $4 # load current configuration
li $5, ~(\
 (1 << 30) # DRE \
 | (1 << 29) # DWE \
 | (1 << 28) # DVE \
 | (1 << 21) # DUE \
 | (1 << 20) # DSE \
 | (1 << 19) # DKE \
 | (1 << 18) # DXE \
 | (1 << 16) # DTE \
 | (1 << 2) # DWB \
 | (1 << 1) # DRB \
)
and $4, $4, $5
mtbpc $4 # reload BPC.

2nd sync.
sync.p # barrier to ensure the configuration change
 # of breakpoint function
#
Reconfigure data breakpoint address.
Note that least significant 18 bits can be anything because it is masked
by DABM register anyway
#
li $6, 0x1233ffff
mtdab $6

#
Setting mask register. Masked if corresponding bit in mask register
is reset to zero.
#
li $5, 0xfffc0000
mtdabm $5

#
Configure data value address.
Note that least significant 8 bits can be anything because it is masked
by DVBM register anyway
#
li $6, 0xbabecafe
mtdvb $6

#
Setting mask register. Masked if corresponding bit in mask register
is reset to zero.
#
li $5, 0x0000ffff
mtdvbm $5

Chapter 13 Hardware Breakpoint

13-19

#
Set new configuration to BPC register.
Note that setting BPC after DAB/DABM is so important to avoid spurious
exception.
#
li $6, \
 (\
 (1 << 30) # DRE = 1 to enable Data B.P on read \
 | (1 << 28) # DVE = 1 to enable Data value B.P \
 | (1 << 19) # DKE = 1 to enable Data B.P in kern. mode. \
 | (1 << 18) # DXE = 1 to enable Data B.P under L1. \
 | (1 << 15) # BED = 1 to enable generating exception. \
)
or $5, $4, $6 # Note that $4 still holds the value used
 # on MTBPC.
mtbpc $5

3rd sync.
sync.p # Barrier to ensure the configuration change
--

13.3.5 Data Value Breakpointing
Data value breakpoint can be configured so that it traps only by data value, by setting
zero to DABM register and configuring the data breakpoint to “Data Address and Value”
mode.

Chapter 13 Hardware Breakpoint

13-20

13.4 Triggering External Probes
There is one dedicated pad to make breakpoint visible outside of C790. This pad, TRIG*
signal, is asserted for two cycles whenever break point event is detected. This trigger
signal generation is enabled by setting ITE/DTE bit in BPC register to 1. Note that
assertion of TRIG* signal is not completely synchronized with the occurrence of exception:
TRIG signal is directly connected to the internal breakpoint detect logic while exception
including breakpoint always occurs along with retirement of instruction. Threfore,
thiming of the assertion of TRIG* signal and that of occurrence of exception may differs.
Especially, if the breakpoint is detected right before entering Level2 mode, and if the
breakpoint exception is taken imprecisely, exception may be masked because of processor's
mode change although TRIG* signal has already been asserted.

13.5 Important notice on using hardware breakpoint
One important issue not mentioned in this section is that breakpointing does not take care
of ASID on detecting breakpoint. This implies not only that software has to take care of it
on context switching to apply breakpointing for a specific process, but also that imprecise
breakpoint exception may be detected after or in the middle of context switching. In such
condition, it may become difficult to identify which process the breakpoint exception
belongs to. This can be avoided by executing SYNC.L instruction right before changing
ASID. (Since all imprecise breakpoint events relates to load/store instructions, executing
SYNC.L works as a barrier)
Relating to this issue, as briefly described in section 13.3, issuing breakpoint exception
may delay because of other level2 exception handling, although the breakpoint exception
is actual precedent from instruction ordering point of view. In such condition, because
C790 generates breakpoint exception after the processor returns from Level2,1 there is no
possibility to miss encounting the breakpoint. However, if the program need to insure the
order of occurrence between level2 exceptions, software has to take care of it (i.e. all level2
handler has to check the occurrence of breakpointing first). Similarly, if a level2 exception
DOES NOT return to where the exception was detected, software has to insure to reset
the condition of breakpoint.

1 C790 tracks the occurrence of breakpoint exception until the breakpoint exception is taken.

Index

X-1

INDEX

A
ABS.. 2-18, 11-6, D-4

ABS.fmt.. 3-21, 10-14, D-41

AbsoluteValue...D-4

ADD ...2-18, 3-15, 5-26, A-11, A-141

ADD. ...D-5

ADD.fmt ... 3-21, 10-14, D-41

ADDI ... 3-14, 5-26, A-12, A-141, B-163, C-41, D-40

ADDIU...3-14, A-12, A-13, A-141, B-163, C-41, D-40

AddressError... A-58, A-67, A-68, A-70, A-79, A-94, A-103, A-116

ADDU..3-15, A-11, A-14, A-141

AdEL ...4-20, 5-8, 5-15

AdES...4-20, 5-8, 5-15

AGNT...8-5, 8-11, 8-14, 8-15

alignment 2-7, 2-16, 3-8, 6-1, A-2, A-6, A-7, A-60, A-64, A-72, A-76, A-95, A-99, A-117, A-121, B-10,

B-162

ALU... 2-3, 2-10, 2-11, 2-12, 2-13, 3-14

AND .. 3-14, 3-15, 3-25, A-3, A-15, A-16, A-141, B-4, B-48, C-39, C-40

ANDI .. 3-14, A-16, A-141, B-163, C-41, D-40

arbiter..8-2, 8-14, 8-15

AREQ.. 8-11, 8-14, 8-15

ASID.......... 2-15, 4-5, 4-8, 4-14, 5-16, 5-17, 5-18, 6-2, 6-3, 6-4, 6-9, 6-10, 6-12, 6-13, 6-16, 6-18, 13-20, C-38

Associativity .. 2-17

B
BadPAddr..2-15, 4-5, 4-17, 4-25, 5-19, 8-25

BadVAddr... 2-15, 4-5, 4-9, 4-12, 5-15, 5-16, 5-17, 5-18

BadVPN2 .. 4-9

BC0...C-41, C-42

BC0F..3-20, C-2, C-41, C-42

BC0FL..3-20, C-3, C-42

BC0T..3-20, C-4, C-42

BC0TL..3-20, C-5, C-42

BC1...D-40

BC1F.. 3-21, 10-15, D-6, D-8, D-40

BC1T.. 3-21, 10-15, D-7, D-8, D-40

BD2.. 4-19, 4-33, 5-5, 5-12, 5-13, 5-14, 5-25, 9-10

Index

X-2

BdPAddr.. 4-25

BDS...4-29, 9-6, 9-8

BE ... 4-23

BED... 13-6, 13-15, 13-16, 13-19

BEM 4-16, 4-17, 4-25, 5-9, 5-11, 5-19, 8-25, A-61, A-62, A-65, A-66, A-73, A-74, A-77, A-78,

 A-97, A-98, A-101, A-102, A-119, A-120, A-123, A-124

BEQ ... 3-17, A-17, A-141, B-163, C-41, D-40

BEQL ... 3-17, A-18, A-141, B-163, C-41, D-40

BEV...................... 4-16, 4-17, 5-7, 5-11, 5-12, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24, 5-26,

5-27, 5-28, 12-6

BFH...C-6

BGEZ ...3-18, A-19, A-142

BGEZAL...3-18, A-20, A-142

BGEZALL...3-18, A-21, A-142

BGEZL ...3-18, A-22, A-142

BGTZ ..3-17, A-23, A-141, B-163, C-41, D-40

BGTZL ..3-17, A-24, A-141, B-163, C-41, D-40

BHINBT...C-6

BHT.. 1-2, 2-3, 2-6, 2-7, 4-31, C-10

BIU .. 2-4

BLEZ...3-17, A-25, A-141, B-163, C-41, D-40

BLEZL.. 3-17, A-26, A-141, B-163, C-41, D-40

BLTZ ..3-18, A-27, A-142

BLTZAL..3-18, A-28, A-142

BLTZALL ..3-18, A-29, A-142

BLTZL ..3-18, A-30, A-142

BNE.. 3-17, A-31, A-141, B-163, C-41, D-40

BNEL.. 3-17, A-32, A-141, B-163, C-41, D-40

bootstrapping ...5-11

BPC...4-26, 5-11, 13-3, 13-4, 13-5, 13-8, 13-14, 13-16, 13-18, 13-19, 13-20

BPE.. 4-23, 5-11, C-9

BR..2-3, 2-11, 2-12, 3-26

branch likely... 2-13, 9-10

BREAK... 2-11, 3-18, 5-10, 5-21, 9-7, A-33, A-39, A-141, B-8, B-67

breakpoint 1-2, 2-19, 3-18, 5-10, 5-11, 5-14, 5-19, 12-1, 13-1, 13-2, 13-3, 13-4, 13-6, 13-7, 13-8, 13-9,

13-14, 13-16, 13-18, 13-19, 13-20, A-33

breakpoints ... 12-1, 13-5, 13-8, A-2

BTAC...................................1-2, 2-3, 2-6, 2-7, 4-29, 4-31, 9-6, 9-7, 9-8, C-6, C-7, C-9, C-10, C-11, C-13, C-28

BUSERR..5-19, 8-10, 8-25, 8-26, 8-27, 8-28, 8-29

BXLBT...C-6

Index

X-3

BXSBT ..C-6

C
C.cond.D...D-8

C.cond.fmt ... 3-21, 10-15, D-41

C.cond.fmt. ...D-6, D-7, D-41

C.cond.S ...D-8

Cache................... 1-2, 2-1, 2-3, 2-6, 2-7, 2-15, 2-17, 2-18, 3-20, 4-5, 4-17, 4-29, 8-2, 8-8, 9-7, 9-9, A-6, A-7,

C-6, C-7, C-8, C-9, C-13

CACHE 2-11, 2-13, 2-17, 3-20, 4-17, 4-23, 4-31, 4-32, 5-19, A-141, B-163, C-6, C-7, C-8, C-9, C-10,

C-11, C-12, C-13, C-41, D-40

CacheOp...C-7

CAUSE... 8-13, 9-10

CCR ... 9-2, 9-5, 9-10, 9-11, A-3

CE... 4-19, 4-23, 5-2, 5-23

CEIL. ...D-12

CEIL.L.fmt.. 3-21, 10-14, D-41

CEIL.W..D-13

CEIL.W.fmt... 3-21, 10-14, D-41

CFC1... 3-21, 10-13, 11-9, D-14, D-40

CH.. 4-16, 4-17

coherency ...2-18, 4-8, 4-24, 6-12, 6-16, 8-2

Coherency... 6-17

Config.. 2-15, 4-5, 4-23, 5-11, 6-7, 6-12, C-9

CONFIG.. 9-10, C-28

consistency ... 13-9

Context...2-15, 4-5, 4-9, 5-15, 5-16, 5-17, 5-18

contexts... 6-3

ConvertFmt ..D-2, D-16, D-17, D-18, D-19, D-23, D-24

COP0 2-7, 2-11, 2-12, 2-13, 2-15, 3-2, 3-20, 4-1, 4-5, 4-16, 4-17, 4-22, 4-28, 5-23, 6-1, 6-3, 6-14,

8-25, 9-2, 9-3, 9-11, A-4, A-141, A-142, B-163, C-1, C-7, C-9, C-10, C-11, C-12, C-14, C-15,

C-17, C-18, C-19, C-20, C-21, C-22, C-23, C-24, C-25, C-26, C-27, C-28, C-29, C-30, C-31,

C-32, C-33, C-34, C-35, C-36, C-41, C-42, D-40

COP1 2-3, 2-4, 2-7, 2-8, 2-10, 2-11, 2-12, 2-13, 2-14, 3-2, 3-21, 4-29, 9-6, 9-7, A-8, A-125, A-141,

A-142, B-163, C-16, C-41, D-1, D-2, D-27, D-29, D-40, D-41

coprocessor 2-4, 2-7, 2-8, 2-16, 3-5, 3-21, 4-16, 4-17, 5-11, 5-23, 6-1, 10-2, A-4, A-5, A-142, C-1, C-2,

C-3, C-4, C-5, C-14, C-15, C-18, C-28, D-1, D-14, D-15, D-21, D-26

Coprocessor 1-1, 1-5, 2-11, 2-15, 3-2, 3-5, 3-16, 3-20, 3-21, 4-1, 4-5, 4-16, 4-19, 4-20, 5-2, 5-8, 5-9,

5-10, 5-23, 6-1, 6-14, 8-10, 8-11, 13-2, A-3, A-4, A-5, A-8, A-141, A-142, C-1, C-2, C-3,

C-4, C-5, C-7, C-16, C-17, C-18, C-19, C-20, C-21, C-22, C-23, C-24, C-25, C-26, C-27,

C-28, C-29, C-30, C-31, C-32, C-33, C-34, C-35, C-36, C-37, C-38, C-39, C-40, D-4, D-5,

Index

X-4

D-6, D-7, D-11, D-12, D-13, D-14, D-15, D-16, D-17, D-18, D-19, D-20, D-21, D-22, D-23,

D-24, D-25, D-26, D-27, D-28, D-29, D-30, D-31, D-32, D-33, D-34, D-35, D-36, D-37, D-38,

D-39

Coprocessor0 ... 13-4

Count ...2-15, 3-25, 4-5, 4-13, 4-15, 5-24, B-4, B-5

counter 2-15, 2-16, 2-19, 3-17, 4-5, 4-17, 4-18, 4-19, 4-28, 4-30, 4-33, 5-5, 5-9, 5-13, 6-1, 9-1, 9-2,

9-3, 9-5, 9-6, 9-8, 9-10, 9-11, C-28, C-35

Counter 2-3, 2-15, 2-19, 3-20, 4-1, 4-2, 4-3, 4-4, 4-5, 4-19, 4-21, 4-28, 4-29, 4-30, 5-2, 5-7, 5-8,

5-9, 5-10, 5-11, 5-13, 9-1, 9-2, 9-3, 9-4, 9-5, 9-6, 9-10, 9-11, 12-6, A-4, C-25, C-26, C-35

CPCOND ..A-3

CPCOND0 ..8-10, 8-11, C-2, C-3, C-4, C-5

CPR A-3, C-17, C-18, C-19, C-20, C-21, C-22, C-23, C-24, C-25, C-26, C-27, C-28, C-29, C-30,

C-31, C-32, C-33, C-34, C-35, C-36

CPUADDR ..8-3, 8-7, 8-9

CPUASTART ... 8-3, 8-7, 8-8, 8-9, 8-12, 8-13, 8-16, 8-19

CPUBE..8-3, 8-7, 8-9

CPUCLK ..8-11

CPUDATA .. 8-3, 8-7, 8-9, 8-17, 8-20

CPUDSTART ...8-3, 8-10, 8-12, 8-13, 8-16, 8-17, 8-19, 8-20, 8-26, 8-28

CPURD ...8-3, 8-8, 8-9

CPUTRANSTYPE... 8-8

CPUTSIZE ..8-3, 8-9, 8-12, 8-13, 8-16, 8-19

CPUWR ..8-3, 8-8, 8-9

CTC1... 3-21, 10-7, 10-8, 10-9, 10-13, 11-9, D-15, D-40

CTE... 4-28, 4-29, 5-11, 9-2, 9-4, 9-5, 9-10, 9-11

CTR0... 4-29, 9-10, 9-11

CTR1... 4-29, 9-10, 9-11

CU... 1-5, 3-5, 3-20, 3-21, 4-16, 4-17, C-1, C-14, C-15

CU0... 5-23, C-7

CVT... 3-26

CVT.D..D-16

CVT.D.fmt .. 3-21, 10-14, D-41

CVT.L. ...D-17

CVT.L.fmt ... 3-21, 10-14, D-41

CVT.S..D-18

CVT.S.fmt... 3-21, 10-14, D-41

CVT.W.fmt.. 3-21, 10-14, D-41

CVT.W.S ...D-19

D
DAB...4-27, 13-3, 13-7, 13-12, 13-16, 13-19

Index

X-5

DABM..4-27, 13-3, 13-7, 13-16, 13-18, 13-19

DADD..3-15, 5-26, A-34, A-141

DADDI... 3-14, 5-26, A-35, A-141, B-163, C-41, D-40

DADDIU ..3-14, A-35, A-36, A-141, B-163, C-41, D-40

DADDU .. 3-15, A-34, A-37, A-141

DBE...4-20, 5-8, 5-19

DC... 4-23

DCE .. 4-23, 5-11, 9-7, C-9, C-28

DDIV ...3-4, 3-14, A-142, B-165, C-42, D-41

DDIVU...3-4, 3-14, A-142, B-165, C-42, D-41

debug.. 3-20, 4-17, 4-18, 4-19, 4-26, 4-33, 5-10, 5-14, 13-6

DEBUG ... 5-14

DEC .. 3-6

decoupling... 2-4

Demultiplexed .. 2-18, 8-2

DEV.. 4-16, 4-17, 5-7, 5-13, 5-14, 5-25, 9-10, 12-6

DHIN ...C-6

DHWBIN ...C-6

DHWOIN...C-6

DI ... 3-20, 4-16, 4-17, 5-23, C-1, C-14, C-15, C-42

DIE .. 4-23, 4-24, 5-11

dirty .. 4-8, 5-18, 6-16, 8-12, A-91, C-11, C-12

Dirty.. 4-8, 4-32, 5-11, 6-16, C-11, C-12, C-13

dispatches... 3-17

displacement..3-3, A-9

DIV ... 2-18, 3-16, 3-26, A-38, A-40, A-80, A-141, D-20

DIV.fmt ... 3-21, 10-14, D-41

DIV1 ..2-14, 3-23, 3-26, 4-2, B-3, B-7, B-9, B-163

Divide ..1-1, 2-6, 3-14, 3-16, 3-21, 3-22, 3-23, 3-24, 3-26, 4-1, B-3, B-5, B-8

DIVU ...3-16, 3-26, A-40, A-141

DIVU1 .. 2-14, 3-23, 3-26, 4-2, B-3, B-9, B-163

DKE... 13-6, 13-16, 13-18, 13-19

DMA...8-1, 8-3, 8-6, 8-7, 8-10, 8-12, 8-13, 8-14, 8-25, 8-26

DMAC ...8-1, 8-3, 8-10, 8-11, 8-13, 8-14, 8-25, 8-26

DMFC1... 3-21, 10-13, D-21, D-40

DMTC1... 3-21, 10-13, D-22, D-40

DMULT..3-4, 3-14, A-142, B-165, C-42, D-41

DMULTU ...3-4, 3-14, A-142, B-165, C-42, D-41

doubleword 3-5, 3-8, 3-9, 5-15, A-4, A-5, A-6, A-34, A-37, A-41, A-42, A-43, A-44, A-45, A-46, A-47,

A-48, A-49, A-50, A-51, A-58, A-59, A-60, A-63, A-64, A-72, A-94, A-95, A-96, A-99, A-100,

Index

X-6

A-118, A-122, B-2, B-64, B-65, B-72, B-74, B-78, B-79, B-80, B-81, B-82, B-83, B-89, B-93,

B-95, B-113, B-120, B-122, B-128, B-129, B-130

DRB ..13-6, 13-16, 13-18

DRE ...5-11, 13-5, 13-6, 13-8, 13-16, 13-18, 13-19

DSE...13-6, 13-16, 13-18

DSLL ..3-15, A-41, A-141

DSLL32..3-15, A-42, A-141

DSLLV..3-15, A-43, A-141

DSRA...3-15, A-44, A-141

DSRA32...3-15, A-45, A-141

DSRAV...3-15, A-46, A-141

DSRL ...3-15, A-47, A-141

DSRL32 ...3-15, A-48, A-141

DSRLV ...3-15, A-49, A-141

DSUB..3-15, 5-26, A-50, A-141

DSUBU .. 3-15, A-50, A-51, A-141

DTE... 13-6, 13-16, 13-18, 13-20

DTLB... 2-3, 2-6, 2-16, 4-29, 9-6, 9-8

DUE ..13-6, 13-16, 13-18

DVB... 4-27, 13-3, 13-8, 13-12

DVBM.. 4-27, 13-3, 13-8, 13-18

DVE... 13-5, 13-16, 13-18, 13-19

DWB..13-6, 13-16, 13-18

DWE.. 5-11, 13-5, 13-6, 13-8, 13-16, 13-18

DXE... 13-6, 13-16, 13-18, 13-19

DXIN ...C-6

DXLDT ..C-6

DXLTG ..C-6

DXSDT..C-6

DXSTG ...C-6

DXWBIN ...C-6

E
EC... 4-23

EDI .. 4-16, 4-17, 5-23, C-1, C-14, C-15

Edian... 4-23

EI..3-20, 4-16, 4-17, 5-23, C-1, C-14, C-15, C-42

EIE ...4-16, 4-17, 4-18, 5-24, C-14, C-15

endian 3-5, 3-6, 3-7, 3-9, 3-10, 3-11, 3-12, 3-13, A-3, A-6, A-61, A-62, A-65, A-66, A-73, A-74,

A-77, A-78, A-97, A-98, A-101, A-102, A-119, A-120, A-123, A-124

endianess ... 3-9

Index

X-7

Endianness .. 1-2, 3-5

EntryHi 2-15, 4-5, 4-14, 5-15, 5-16, 5-17, 5-18, 6-2, 6-3, 6-4, 6-15, C-28, C-37, C-38, C-39, C-40

EntryHI .. 6-16

EntryHi7 ..C-37

EntryLo..5-15, 5-16, 5-17, 5-18, 6-15, C-38, C-39, C-40

EntryLo0.. 2-15, 4-5, 4-8, 5-16, 6-15, 6-16, C-38, C-39, C-40

EntryLo1.. 2-15, 4-5, 4-8, 5-16, 6-15, 6-16, C-38, C-39, C-40

EPC...................... 2-6, 2-15, 4-5, 4-21, 4-33, 5-2, 5-3, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23,

5-26, 5-27, 11-9, C-16

ERET2-11, 2-12, 2-13, 3-20, 4-4, 5-5, 5-24, 6-11, 9-7, 9-11, 12-2, 12-5, C-16, C-38, C-39, C-40, C-42

ERL...................... 4-16, 4-17, 4-18, 5-5, 5-9, 5-11, 5-12, 5-13, 5-14, 5-19, 5-24, 5-25, 6-6, 6-7, 6-8, 6-9, 6-10,

6-11, 6-12, 9-2, 9-10, 9-11, 13-5, 13-6, C-14, C-15, C-16

ERL0 ... 9-5

ERL1 ... 9-5

Error 2-6, 2-15, 4-5, 4-12, 4-17, 4-18, 5-2, 5-10, 5-15, 5-19, 5-23, 6-6, 6-7, 6-9, 8-13, 8-25, 8-26,

8-28, A-2, A-54, A-55, A-56, A-57, A-58, A-62, A-66, A-67, A-68, A-70, A-74, A-78, A-79,

A-93, A-94, A-98, A-102, A-103, A-116, A-120, A-124, B-10, B-162, C-7, C-8, D-26, D-34,

D-37

ErrorEPC...4-33, 5-5, 5-12, 5-13, 5-14, 5-25, 9-10, 9-11, C-16

ErrorPC.. 2-15, 4-5

EVENT.. 9-5

EVENT0.. 4-28, 4-29, 9-2, 9-5, 9-6, 9-11

EVENT1..4-28, 4-29, 9-5, 9-6, 9-11

EXC2... 4-19, 5-5, 5-8, 5-11, 5-12, 5-13, 5-14, 5-25, 9-10

ExcCode 4-19, 4-20, 5-2, 5-8, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24, 5-26, 5-27

exception.............. 2-15, 2-16, 2-18, 2-19, 3-2, 3-5, 3-16, 3-18, 3-20, 4-4, 4-5, 4-9, 4-12, 4-14, 4-16, 4-17, 4-18,

4-19, 4-20, 4-21, 4-29, 4-33, 5-1, 5-2, 5-3, 5-5, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15,

5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24, 5-25, 5-26, 5-27, 6-1, 6-2, 6-4, 6-6,

6-9, 6-11, 6-14, 6-15, 6-16, 6-17, 6-20, 8-13, 8-25, 9-2, 9-7, 9-8, 9-10, 9-11, 10-8, 11-2, 11-3,

12-1, 12-2, 12-3, 12-5, 12-6, 12-7, 12-14, 12-15, 12-16, 12-17, 12-18, 12-19, 12-20, 13-2,

13-4, 13-5, 13-6, 13-8, 13-9, 13-14, 13-15, 13-16, 13-18, 13-19, 13-20, A-2, A-6, A-8, A-11,

A-12, A-13, A-14, A-20, A-21, A-28, A-29, A-33, A-34, A-35, A-36, A-37, A-38, A-39, A-40,

A-50, A-51, A-54, A-55, A-58, A-67, A-68, A-70, A-86, A-87, A-91, A-92, A-94, A-103, A-106,

A-107, A-108, A-109, A-114, A-115, A-116, A-126, A-127, A-128, A-129, A-130, A-131,

A-132, A-133, A-134, A-135, A-136, A-137, A-138, A-142, B-7, B-8, B-9, B-11, B-12, B-13,

B-14, B-20, B-21, B-22, B-23, B-25, B-27, B-28, B-66, B-67, B-68, B-70, B-71, B-84, B-86,

B-91, B-93, B-95, B-111, B-113, B-118, B-120, B-122, B-165, C-1, C-2, C-3, C-4, C-5, C-7,

C-8, C-16, C-17, C-18, C-19, C-20, C-21, C-22, C-23, C-24, C-25, C-26, C-27, C-28, C-29,

C-30, C-31, C-32, C-33, C-34, C-35, C-36, C-37, C-38, C-39, C-40, C-42, D-26, D-37, D-41

Exception 2-6, 2-11, 2-15, 2-19, 3-18, 3-20, 3-21, 4-5, 4-18, 4-20, 4-21, 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7,

Index

X-8

5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23,

5-24, 5-25, 5-26, 5-27, 5-28, 6-6, 6-11, 8-25, 8-26, 12-2, 12-5, 12-6, 12-7, 12-14, 12-15,

12-16, 12-17, 12-18, 13-2, 13-6, A-8, A-37, A-79, B-62, C-8

Exceptions ...11-5

execution pipeline ... 2-3, 2-5, 2-10, 2-11, 2-12, 3-26, C-16

ExHnd .. 12-14, 12-15, 12-16, 12-17, 12-18

ExHnd1 ..12-19, 12-20

ExHnd2 ..12-19, 12-20

EXL 4-16, 4-17, 4-18, 4-21, 4-29, 5-2, 5-5, 5-7, 5-9, 5-12, 5-16, 5-19, 5-24, 6-6, 6-8, 6-9, 6-10,

6-11, 6-12, 9-2, 12-6, 13-5, 13-6, C-14, C-15, C-16

EXL0 ..4-29, 9-2, 9-5, 9-11

EXL1 ... 4-29, 9-5, 9-11

F
FCR...D-14

FCR0... 10-4

FCR31.. 10-4, 10-6, D-15

FCRs... 10-4

FetchAddress.. C-10, C-11

FGR .. 10-13

FGRs... 10-2

FLOOR.L...D-23

FLOOR.L.fmt ... 3-21, 10-14, D-41

FLOOR.W. ..D-24

FLOOR.W.fmt .. 3-21, 10-14, D-41

FP_Control..D-14, D-15

FPE..4-20, 5-8, 5-28, 11-3

FPR...................... 2-3, 2-9, D-2, D-4, D-5, D-8, D-12, D-13, D-16, D-17, D-18, D-19, D-20, D-21, D-22, D-23,

D-24, D-26, D-27, D-28, D-30, D-31, D-32, D-33, D-35, D-36, D-37, D-38, D-39

FPRs..10-2, D-10, D-16, D-17, D-28

FPU...................... 1-2, 2-3, 2-7, 2-8, 2-14, 2-18, 4-16, 10-13, 10-14, 11-2, 11-5, 11-8, D-1, D-2, D-3, D-14,

D-15, D-27, D-29

FR ...4-16, 4-17, 10-2

funnel shift ...2-3, 2-14, 4-1, 4-2, 4-4, B-17, B-20, B-21, B-22, B-161

Funnel shift ..2-11

G
gathering.. 2-4, 2-19, 6-17, 9-1, A-8, A-125

General Purpose Registers ..2-3, 4-1, 4-2, 4-3, 4-4, A-3

global bit.. 6-18

GPR ..D-21

GPR10 .. B-21, B-22

Index

X-9

GPRLEN ... A-3, D-6, D-7

H
HI 2-11, 2-14, 3-16, 3-22, 3-23, 3-24, 3-26, 4-1, 4-2, 4-3, 4-4, A-38, A-39, A-40, A-80, A-84,

A-86, A-87, B-2, B-5, B-11, B-13, B-23, B-25, B-66, B-67, B-68, B-70, B-84, B-85, B-86,

B-87, B-91, B-92, B-93, B-95, B-101, B-102, B-111, B-113, B-115, B-116, B-118, B-120,

B-122

HI0 .. 4-2, 4-3, 4-4, B-2

HI1 2-11, 2-14, 4-2, 4-3, 4-4, B-2, B-3, B-7, B-8, B-9, B-12, B-14, B-15, B-18, B-24, B-26

hit under miss .. 1-2, 4-23

I
IAB ...4-27, 13-3, 13-6, 13-7, 13-11, 13-13, 13-14

IABM ... 4-27, 13-3, 13-7, 13-14

IAE ...5-11, 13-5, 13-14, 13-15

IBE ..4-20, 5-8, 5-19

IC .. 4-23

ICE... 4-23, 5-11, C-9

ID ... 4-14, 6-16

IE... 4-16, 4-17, 4-18, 5-9, 5-12, 5-24, C-14, C-15

IEEE............................2-18, 10-1, 10-8, 10-9, 10-10, 11-2, 11-3, 11-6, 11-7, 11-8, 11-9, D-8, D-12, D-13, D-19

IFL...C-6

IHIN...C-6

IKE ... 13-5, 13-14

IM... 4-13, 4-16, 4-17, 4-18, 5-9

imprecise ...5-14, 5-19, 8-13, 13-2, 13-5, 13-8, 13-20

Index 2-15, 3-20, 4-5, 4-6, 5-18, 5-19, 6-20, C-7, C-9, C-10, C-11, C-12, C-13, C-37, C-38, C-39

INDEX...C-6

Index5 ...C-38, C-39

Init ..9-11

initialize ..9-11

initializing ...5-11

Initializing ...9-11

INT .. 8-10

interleave .. B-88, B-89

interleaved .. B-88, B-89

interrupt........ 1-5, 3-16, 3-22, 4-13, 4-15, 4-16, 4-17, 4-19, 4-33, 5-24, 8-10, 8-13, 8-25, 8-26, 9-4, 13-8, C-16

Interrupt............... 3-20, 4-16, 4-17, 4-18, 4-19, 4-20, 5-2, 5-5, 5-7, 5-8, 5-9, 5-10, 5-12, 5-24, 8-10, 8-25, 12-6

Interrupts.. 4-16, 4-18

INVALIDATE ...C-6

ISE ... 13-5, 13-14

Issue .. 2-3, 2-12

Index

X-10

issues.. 2-3, 4-24, 8-12, 13-9

ITE ..13-6, 13-14, 13-20

ITLB ... 2-3, 2-6, 2-16, 9-6, 9-8

IUE..13-5, 13-14, 13-15

IV..1-1, 1-2, 1-3, 2-16, 3-2, 3-4, 3-19, 6-1, A-82, A-83, A-91, A-141

IXE ... 13-5, 13-14

IXIN...C-6

IXLDT..C-6

IXLTG..C-6

IXSDT ...C-6

IXSTG ...C-6

J
J 3-3, 3-17, 9-7, 12-2, A-9, A-17, A-18, A-19, A-22, A-23, A-24, A-25, A-26, A-27, A-30, A-31,

A-32, A-52, A-61, A-62, A-65, A-66, A-73, A-74, A-77, A-78, A-141, B-163, C-41, D-6, D-7,

D-40

JAL.. 3-17, 9-7, 12-2, A-20, A-21, A-28, A-29, A-53, A-141, B-163, C-41, D-40

JALR ... 3-17, 9-7, 12-2, 12-5, A-20, A-21, A-28, A-29, A-54, A-141

JMPA.. 12-3, 12-4

JMPB ... 12-3, 12-4

JR......................... 3-17, 9-7, 12-2, 12-5, A-17, A-18, A-19, A-22, A-23, A-24, A-25, A-26, A-27, A-30, A-31,

A-32, A-55, A-141, D-6, D-7

JTLB... 9-6, 9-8

K
K0...4-23, 4-24, 4-29, 6-7, 6-12, 9-2, 9-5, 9-10, 9-11, C-28

KB 6-2, 6-5, A-17, A-18, A-19, A-20, A-21, A-22, A-23, A-24, A-25, A-26, A-27, A-28, A-29,

A-30, A-31, A-32

Kernel................... 2-16, 2-19, 3-20, 3-26, 4-16, 4-17, 4-18, 4-29, 5-2, 5-22, 5-23, 6-1, 6-6, 6-7, 6-10, 6-11,

6-12, 6-13, 9-2, 13-5, 13-6, C-1, C-7, C-14, C-15

kseg0 ...4-24, 6-7, 6-12, 9-10, C-28

kseg1 ... 6-7, 6-12

kseg3 .. 2-16, 4-9, 6-1, 6-7, 6-12, 6-13

ksseg.. 6-7, 6-12

KSU... 4-16, 4-17, 4-18, 5-2, 6-6, 6-8, 6-9, 6-10, 6-11, 6-12, 6-13, C-14, C-15

kuseg ...2-16, 6-1, 6-7, 6-12

L
LB.. 3-4, 13-8, A-56, A-141, B-163, C-41, D-40

LBU.. 3-4, A-57, A-141, B-163, C-41, D-40

LD ..3-4, 13-8, A-5, A-58, A-141, B-163, C-41, D-40

LDC1.. 3-5, 3-21, 3-26, 10-13, A-141, B-163, C-41, D-25, D-40

LDL ..3-4, 3-8, A-59, A-60, A-63, A-141, B-163, C-41, D-40

Index

X-11

LDR..3-4, 3-8, A-59, A-63, A-64, A-141, B-163, C-41, D-40

LH ..3-4, 13-8, A-67, A-141, B-102, B-163, C-41, D-40

LHU.. 3-4, A-68, A-141, B-163, C-41, D-40

li ... 13-14, 13-15, 13-16, 13-18, 13-19

Link ..2-11, 3-17, 3-18, 4-4

LL ..1-2, 3-4, A-142, B-165, C-42, D-41

LLD ...1-2, 3-4, A-142, B-165, C-42, D-41

LO 2-11, 2-14, 3-16, 3-22, 3-23, 3-24, 3-26, 4-1, 4-2, 4-3, 4-4, A-38, A-39, A-40, A-81, A-85,

A-86, A-87, B-2, B-5, B-11, B-13, B-23, B-25, B-66, B-67, B-68, B-70, B-84, B-85, B-86,

B-87, B-91, B-92, B-93, B-95, B-102, B-106, B-111, B-113, B-116, B-117, B-118, B-120,

B-122

LO0 ..4-2, 4-3, 4-4, 6-16, B-2

LO1 2-11, 2-14, 4-2, 4-3, 4-4, 6-16, B-2, B-3, B-7, B-8, B-9, B-12, B-14, B-16, B-19, B-24, B-26

LoadMemory...............................A-6, A-56, A-57, A-58, A-60, A-64, A-67, A-68, A-70, A-72, A-76, A-79, B-10

Lock ...2-17, 4-32, 5-11, C-11, C-12, C-13

Locking.. 2-17

logical pipe..2-10, 2-12, 2-13

LQ .. 3-5, 3-25, 13-8, A-141, B-4, B-10, B-163, C-41, D-40

LRF ... 4-32, 5-11, C-9, C-10, C-11, C-12, C-13

LUI .. 3-14, 3-26, A-69, A-141, B-163, C-41, D-40

LW..3-4, A-5, A-70, A-141, B-102, B-116, B-163, C-41, D-40

LWC1 ..3-5, 3-21, 3-26, 10-13, A-141, B-163, C-41, D-26, D-40

LWC2 .. A-142, B-165, C-42, D-41

LWL.. 3-4, 3-8, A-71, A-72, A-75, A-76, A-141, B-163, C-41, D-40

LWR ... 3-4, 3-8, A-71, A-72, A-75, A-76, A-141, B-163, C-41, D-40

LWU ..3-4, A-79, A-141, B-163, C-41, D-40

LZC ..2-13, B-4, B-90

M
MAC.. 2-11, 3-16, 3-22

MAC0.. 2-11, 2-12, 2-13

MAC1.. 2-11, 2-12, 2-13

MADD ..3-23, 3-26, B-3, B-11, B-13, B-163

MADD1 ...2-14, 3-23, 3-26, 4-2, B-3, B-12, B-14, B-163

MADDU... 3-23, 3-26, B-3, B-13, B-163

MADDU1.. 2-14, 3-23, 3-26, 4-2, B-3, B-14, B-163

Mask 2-15, 2-19, 3-20, 4-5, 4-10, 4-16, 4-17, 4-27, 5-9, 5-24, 6-15, 13-3, 13-4, 13-7, 13-8, C-20,

C-22, C-24, C-30, C-32, C-34, C-39, C-40

MASK... 4-10, 6-16

Maskable.. 5-8, 5-12

MAX .. 2-18

Index

X-12

MB.. 6-2, 6-5, 6-12, 6-13, A-52, A-53

MF0...C-41

MFBPC .. 3-20, 13-4, C-17, C-41

MFC0 ... 3-20, 4-1, 9-3, 13-2, 13-4, C-18

MFC1 ... 3-21, 10-13, D-27, D-40

MFDAB .. 3-20, 13-4, C-19, C-41

MFDABM ... 3-20, 13-4, C-20, C-41

MFDVB .. 3-20, 13-4, C-21, C-41

MFDVBM ... 3-20, 13-4, C-22, C-41

MFHI ... 2-11, 3-16, A-80, A-81, A-141

MFHI1 ...2-11, 2-14, 3-23, 4-2, B-3, B-15, B-163

MFIAB.. 3-20, 13-4, C-23, C-41

MFIABM... 3-20, 13-4, C-24, C-41

MFLO..3-16, 3-23, A-81, A-141

MFLO1...2-14, 3-23, 4-2, B-3, B-16, B-163

MFPC.. 3-20, 9-2, 9-3, C-25, C-41

MFPS.. 3-20, 9-2, 9-3, C-26, C-41

MFSA.. 3-25, A-141, B-5, B-17, B-20, B-21, B-22

MIN ... 2-18

Misaligned... 3-8

misalignment...C-8

mispredicted .. 9-6, 9-7

Miss..2-17, 4-17, 6-4, 8-8, 9-7, 9-8, 12-6

misses...1-1, 6-17, 9-9

MMI ...5-22, A-141, B-163, B-164, B-165, C-41, D-40

MMI0 ... B-163, B-164

MMI1 ... B-163, B-164

MMI2 ... B-163, B-165

MMI3 ... B-163, B-165

MMU ...2-3, 2-15, 2-16, 4-5, 6-1, 6-14

mod...A-38, A-40, B-7, B-9, B-66, B-68, B-70

MOV...11-6, D-28

MOV. fmt ... 10-8

MOV.fmt ... 3-21, 10-14, D-41

Move1 ..2-11

MOVN ..3-19, A-82, A-141

MOVZ...3-19, A-83, A-141

MT0...C-41

MTBPC ..3-20, 13-4, 13-16, 13-19, C-27, C-41

MTC0 ... 3-20, 4-1, 9-3, 13-2, 13-4, C-28

Index

X-13

MTC1 .. 3-21, 3-26, 10-13, D-29, D-40

MTDAB .. 3-20, 13-4, C-29, C-41

MTDABM ... 3-20, 13-4, C-30, C-41

MTDVB .. 3-20, 13-4, C-31, C-41

MTDVBM ... 3-20, 13-4, C-32, C-41

MTHI ...2-11, 3-16, A-84, A-141

MTHI1 ...2-11, 2-14, 3-23, 4-2, B-3, B-18, B-163

MTIAB.. 3-20, 13-4, C-33, C-41

MTIABM... 3-20, 13-4, C-34, C-41

MTLO...3-16, A-85, A-141

MTLO1...2-14, 3-23, 4-2, B-3, B-19, B-163

MTPC.. 3-20, 9-2, 9-3, C-35, C-41

MTPS.. 3-20, 9-2, 9-3, C-36, C-41

MTSA.. 2-13, 3-25, A-141, B-5, B-17, B-20

MTSAB... 2-13, 3-25, A-141, A-142, B-5, B-20, B-21, B-22, B-161

MTSAH ..2-13, 3-25, A-141, A-142, B-5, B-20, B-22, B-161

MTSAx ..B-20

MUL .. 2-18, D-30

MUL.fmt ... 3-21, 10-14

MUL.mft ..D-41

MULT .. 3-16, 3-23, 3-26, A-80, A-86, A-87, A-141, B-3, B-23, B-25

MULT1 ..2-14, 3-23, 3-26, 4-2, B-3, B-24, B-26, B-163

Multi .. 1-2

Multimaster .. 2-18, 8-2

multimedia.. 1-1, 1-2, 2-3, 2-6, 3-2, 3-4, 3-5, 3-23

Multimedia... 2-3, 2-14, 3-5, 3-22, 3-23, 3-24, 3-26, 4-2, B-1, B-3

multiply................. 2-14, 3-2, 3-4, 3-16, 3-22, 3-23, 4-1, 4-2, 4-4, A-8, A-86, A-87, A-125, B-11, B-12, B-13,

B-14, B-23, B-24, B-25, B-26, B-84, B-85, B-86, B-87, B-91, B-92, B-93, B-95, B-111, B-113,

B-118, B-120, B-122, C-16, D-30

Multiply................1-1, 1-2, 2-3, 2-6, 2-9, 2-11, 3-2, 3-14, 3-16, 3-21, 3-22, 3-23, 3-24, 3-26, 4-1, B-1, B-3, B-5

MULTU... 3-16, 3-23, 3-26, A-87, A-141, B-3, B-25

MULTU1... 2-14, 3-23, 3-26, 4-2, B-3, B-26, B-163

N
NaN... 10-11, 11-6, D-8, D-10, D-11, D-12, D-13

NaNs... 2-18

NBE.. 4-23, 5-11, C-28

NEG ... 2-18, 11-6, D-31

NEG.fmt ... 3-21, 10-14, D-41

Negate ..3-21, 8-3, D-2, D-31, D-32, D-33

NMI 4-17, 4-18, 4-19, 4-33, 5-2, 5-5, 5-7, 5-8, 5-9, 5-10, 5-12, 8-10, 8-13, 9-11, 12-6, C-14

Index

X-14

nonmaskable .. 4-33

NOR...3-15, 3-25, A-3, A-88, A-141, B-4, B-124

Normalization.. 2-9

NOT ...6-2, 13-8, 13-20, A-3, A-88, B-124

NotWordValue...... A-11, A-12, A-13, A-14, A-38, A-40, A-86, A-87, A-110, A-111, A-112, A-113, A-114, A-115,

B-7, B-9, B-11, B-12, B-13, B-14, B-23, B-24, B-25, B-26, B-68, B-70, B-93, B-95, B-113,

B-120, B-122

NullifyCurrentInstruction ..A-8, A-18, A-21, A-22, A-24, A-26, A-29, A-30, A-32, C-5

O
Offset ..6-4, 6-5, A-62, A-66, A-74, A-78, A-98, A-102, A-120, A-124

opcode ...2-16, 3-9, 5-22, 6-1, A-2

OpCode................ 3-23, 3-24, 3-25, 6-20, 9-3, A-141, A-142, B-163, B-164, B-165, C-6, C-25, C-26, C-35,

C-36, C-41, C-42, D-40, D-41

operand... 1-2, 3-14, 3-22, 3-23, A-104, B-1, B-3, D-1, D-4, D-31, D-35

Operand...2-4, 3-14, 3-15, 3-23, B-3

OR..................... 2-9, 3-14, 3-15, 3-25, A-3, A-88, A-89, A-90, A-139, A-140, A-141, B-4, B-124, B-125, B-160

ORI..3-14, A-90, A-141, B-163, C-41, D-40

Ov ...4-20, 5-8, 5-26

Overflow............... 2-9, 4-30, 5-2, 5-8, 5-26, A-11, A-12, A-13, A-14, A-34, A-35, A-36, A-37, A-50, A-51, A-106,

A-107, A-108, A-109, A-114, B-31, B-35, B-37, B-39, B-42, B-44, B-144, B-148, B-150

OVERFLOW ... 5-5

OVFL.. 4-28, 4-30, 9-2, 9-10, 9-11

P
P0EXEA... 12-3, 12-4

P0EXEB... 12-3, 12-4

P1EXEA... 12-3, 12-4

P1EXEB... 12-3, 12-4

PA ..C-6, C-7, C-9, C-10, C-11, C-12

PABSH ... 3-24, B-4, B-27, B-164

PABSW .. 3-24, B-4, B-28, B-164

PADDB... 3-24, B-3, B-29, B-164

PADDH... 3-24, B-3, B-30, B-164

PADDSB .. 3-24, B-3, B-31, B-164

PADDSH .. 3-24, B-3, B-35, B-164

PADDSW ... 3-24, B-3, B-37, B-164

PADDUB .. 3-24, B-3, B-39, B-164

PADDUH.. 3-24, B-3, B-42, B-164

PADDUW ... 3-24, B-3, B-44, B-164

PADDW.. 3-24, B-3, B-46, B-164

PADSBH .. 3-24, B-3, B-47, B-164

Index

X-15

Page..2-16, 4-8, 4-10, 6-16, 6-17, 9-7

PageMask... 2-15, 4-5, 4-10, 6-14, 6-15, 6-16, C-38, C-39, C-40

PAND ... 3-25, B-4, B-48, B-165

PC........................ 1-2, 2-3, 2-6, 2-19, 3-16, 3-17, 3-18, 4-1, 4-3, 4-4, 5-12, 9-10, 12-1, 12-2, 12-3, 12-5, 12-7,

12-8, 12-9, 12-10, 12-11, 12-12, 12-13, 12-14, 12-15, 12-16, 12-17, 12-18, 12-19, 12-20,

13-7, A-4, A-9, A-17, A-18, A-19, A-20, A-21, A-22, A-23, A-24, A-25, A-26, A-27, A-28,

A-29, A-30, A-31, A-32, A-52, A-53, A-54, A-55, C-2, C-3, C-4, C-5, C-16, D-6, D-7

PC tracing ... 1-2, 2-19, 12-1, 12-3

PCEQB .. 3-25, B-4, B-49, B-164

PCEQH .. 3-25, B-4, B-52, B-164

PCEQW ... 3-25, B-4, B-54, B-164

PCGTB... 3-25, B-4, B-56, B-164

PCGTH .. 3-25, B-4, B-59, B-164

PCGTW ... 3-25, B-4, B-61, B-164

PCPYH... 3-25, B-5, B-63, B-165

PCPYLD... 3-25, B-5, B-64, B-165

PCPYUD.. 3-25, B-5, B-65, B-165

PDIVBW.. 3-24, B-5, B-66, B-69, B-71, B-165

PDIVUW .. 3-24, B-5, B-68, B-165

PDIVW ... 3-24, B-5, B-70, B-165

Perf .. 2-15, 4-5

PerfC...4-19, 5-8, 5-13

Performance 1-2, 2-1, 2-15, 2-19, 3-20, 4-5, 4-17, 4-19, 4-28, 4-29, 4-30, 5-2, 5-5, 5-7, 5-8, 5-9, 5-10,

5-11, 5-13, 9-1, 9-2, 9-3, 9-4, 9-10, 12-6, C-25, C-26, C-35, C-36

performance monitor... 3-20

PEXCH... 3-25, B-5, B-72, B-165

PEXCW.. 3-25, B-5, B-73, B-165

PEXEH... 3-25, B-5, B-74, B-165

PEXEW .. 3-25, B-5, B-75, B-165

PEXT5.. 3-25, B-5, B-76, B-164

PEXTLB ... 3-25, B-5, B-78, B-164

PEXTLH... 3-25, B-5, B-79, B-164

PEXTLW .. 3-25, B-5, B-80, B-164

PEXTUB... 3-25, B-5, B-81, B-164

PEXTUH .. 3-25, B-5, B-82, B-164

PEXTUW ... 3-25, B-5, B-83, B-164

PFN.. 2-15, 4-5, 4-8, 6-16, C-10, C-11, C-12, C-39, C-40

PHMADH ... 3-24, B-5, B-84, B-165

PHMSBH.. 3-24, B-5, B-86, B-165

Physical..2-10, 2-15, 2-16, 4-5, 4-25, 6-3, 6-4, 6-18, A-4, A-6, A-7, C-7

Index

X-16

PINTEH.. 3-25, B-5, B-88, B-165

PINTH .. 3-25, B-5, B-89, B-165

PLZCW .. 3-25, B-4, B-90, B-163

PMADDH .. 3-24, B-5, B-91, B-94, B-96, B-112, B-114, B-119, B-121, B-123, B-165

PMADDUW.. 3-24, B-5, B-93, B-165

PMADDW .. 3-24, B-5, B-95, B-165

PMAXH .. 3-24, B-4, B-97, B-164

PMAXW ... 3-24, B-4, B-99, B-164

PMFHI.. 3-24, B-5, B-101, B-165

PMFHL... 3-24, B-5, B-102, B-163

PMFLO... 3-24, B-5, B-106, B-165

PMINH ... 3-24, B-4, B-107, B-164

PMINW .. 3-24, B-4, B-109, B-164

PMSUBH...3-24, B-5, B-111, B-165

PMSUBW..3-24, B-5, B-113, B-165

PMTHI...3-24, B-5, B-115, B-165

PMTHL..3-24, B-5, B-116, B-163

PMTLO..3-24, B-5, B-117, B-165

PMULTH ...3-24, B-5, B-118, B-165

PMULTUW ... 3-24, B-5, B-120, B-165

PMULTW ... 3-24, B-5, B-122, B-165

PNOR... 3-25, B-4, B-124, B-165

pointer ..4-9, A-92

POR ... 3-25, B-4, B-125, B-165

PPAC5 ... 3-25, B-5, B-126, B-164

PPACB ... 3-25, B-5, B-128, B-164

PPACH... 3-25, B-5, B-129, B-164

PPACW .. 3-25, B-5, B-130, B-164

precise .. 9-4

prediction ...1-2, 2-3, 4-23, 9-7

Prediction.. 4-23

PREF ...3-19, 4-23, A-2, A-91, A-141, B-163, C-41, D-40

prefetch..5-19, A-91, A-92

Prefetch...1-1, 1-2, 2-11, 2-17, 3-19, 8-8, 9-7, A-7, A-92

Prefix... 8-3

PREVH... 3-25, B-5, B-131, B-165

PRId ..2-15, 4-5, 4-22

priorities .. 12-7

privilege.. 9-5, 9-11, C-8

privilege mode ... 9-5, 9-11

Index

X-17

Probe ... 3-20, 4-6, 4-14, 5-17, 6-20

PROT3W ... 3-25, B-5, B-132, B-165

Pseudo... 2-15, 4-5

pseudocode .. A-1, A-2, A-3, A-4, A-6, A-8, B-2, D-2

Pseudocode...A-3, A-4, A-6, B-2, D-2

PSLLH.. 3-25, B-4, B-133, B-163

PSLLVW .. 3-25, B-4, B-134, B-165

PSLLW ... 3-25, B-4, B-135, B-163

PSRAH... 3-25, B-4, B-136, B-163

PSRAVW ... 3-25, B-4, B-137, B-165

PSRAW.. 3-25, B-4, B-138, B-163

PSRLH... 3-25, B-4, B-139, B-163

PSRLVW .. 3-25, B-4, B-140, B-165

PSRLW .. 3-25, B-4, B-141, B-163

PSUBB... 3-24, B-3, B-142, B-164

PSUBH... 3-24, B-3, B-143, B-164

PSUBSB .. 3-24, B-3, B-144, B-164

PSUBSH .. 3-24, B-3, B-148, B-164

PSUBSW ... 3-24, B-3, B-150, B-164

PSUBUB .. 3-24, B-3, B-152, B-164

PSUBUH.. 3-24, B-3, B-155, B-164

PSUBUW ... 3-24, B-3, B-157, B-164

PSUBW.. 3-24, B-3, B-159, B-164

PTagLo... 4-31, 4-32

PTE...2-15, 4-5, 4-9

PTEBase... 4-9

PTEs ... 4-9

PXOR... 3-25, B-4, B-160, B-165

Q
QFSRV.. 3-25, B-5, B-20, B-21, B-22, B-161, B-164

qNaN..11-6

Quadword .. 1-2, 3-5, 3-8, 3-10, 3-12, 3-25, 8-9, B-4, B-5

QUADWORD ...A-7, B-10, B-162

Quintibyte... 3-10, 3-12

quotient ...4-4, A-38, A-40, B-7, B-9

R
R10000 ... 1-3

R4000 .. 1-3, 6-2

random...2-15, 4-5, 4-11, 6-2

Random ..2-15, 3-20, 4-5, 4-7, 4-11, 4-14, 5-11, 5-16, 5-17, 6-20, C-40

Index

X-18

Random5 ..C-40

Refill 2-3, 2-17, 4-12, 4-14, 5-2, 5-7, 5-9, 5-16, 8-8, A-56, A-57, A-58, A-62, A-66, A-67, A-68,

A-70, A-74, A-78, A-79, A-93, A-94, A-98, A-102, A-103, A-116, A-120, A-124, B-10, B-162,

C-7, C-8, D-26, D-37

REGIMM .. 5-22, A-141, A-142, B-163, C-41, D-40

register ...10-2, 10-6, 11-2, 11-3, 11-8, 11-9

Register................ 2-5, 2-6, 2-8, 2-15, 3-14, 3-15, 3-17, 3-20, 3-25, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11,

4-12, 4-13, 4-14, 4-15, 4-16, 4-17, 4-18, 4-19, 4-21, 4-22, 4-23, 4-25, 4-26, 4-27, 4-28,

4-29, 4-30, 4-32, 4-33, 5-8, 6-9, 6-10, 6-12, 6-16, 8-25, 9-2, 9-3, 9-4, 9-10, 10-7, 10-8, 10-

9, 13-2, 13-3, 13-4, 13-5, 13-7, 13-8, 13-9, A-3, A-4, A-5, A-9, A-54, B-3, B-5, B-161

registers .. 10-4

Registers.......2-1, 2-3, 2-14, 2-15, 3-17, 4-1, 4-2, 4-3, 4-4, 4-5, 4-8, 4-26, 4-28, 4-31, 6-14, 9-2, 9-3, 9-4, 13-3

REL... 8-11, 8-14, 8-15

Request... 9-9

Res... 4-19, 5-8

Reset...4-18, 4-19, 5-1, 5-2, 5-7, 5-8, 5-9, 5-10, 5-11, 8-11, 9-4, 12-6, 13-14

RESET... 5-11, 5-12, 8-11, 8-14

RI ... 2-16, 4-20, 5-8, 5-22, 6-1

Root .. 3-21

Rotate ..3-25, B-5

ROUND.L..D-32

ROUND.L.fmt... 3-21, 10-14, D-41

ROUND.W ..D-33

ROUND.W.fmt ... 3-21, 10-14, D-41

RSQRT .. 2-18, 3-26

S
S0...4-29, 9-2, 9-5, 9-11

S1.. 4-29, 9-5, 9-11

sa 3-3, A-41, A-42, A-44, A-45, A-47, A-48, A-104, A-110, A-112, B-133, B-135, B-136, B-138,

B-139, B-141

SA2-3, 2-11, 2-12, 2-13, 2-14, 3-25, 4-1, 4-2, 4-3, 4-4, B-17, B-20, B-21, B-22, B-161

Saturate B-34, B-36, B-38, B-41, B-43, B-45, B-147, B-149, B-151, B-154, B-156, B-158

saturationB-3, B-31, B-35, B-37, B-39, B-42, B-44, B-144, B-148, B-150, B-152, B-155, B-157

Saturation...3-24, B-3

SB .. 3-4, A-93, A-141, B-163, C-41, D-40

SC...1-2, 3-4, A-142, B-165, C-42, D-41

SCD ..1-2, 3-4, A-142, B-165, C-42, D-41

SD..3-4, 13-8, A-5, A-94, A-141, B-163, C-41, D-40

SDC1 ...3-5, 3-21, 10-13, A-141, B-163, C-41, D-34, D-40

SDL..3-4, 3-8, A-95, A-96, A-99, A-141, B-163, C-41, D-40

Index

X-19

SDR ...3-4, 3-8, A-95, A-99, A-100, A-141, B-163, C-41, D-40

segment .. 2-16, 4-9, 6-1, 6-8, 6-9, 13-9

Segment..6-9, 6-10, 6-12

Semaphore ... 3-4

Septibyte .. 3-10, 3-12

Serialization .. 3-19

Sextibyte .. 3-10, 3-12

SH...3-4, A-103, A-141, B-102, B-163, C-41, D-40

Shift... 2-3, 2-11, 3-14, 3-15, 3-25, 3-26, 4-2, 4-4, B-4, B-5

Shifter.. 2-3

shutdown... 6-2

sign 2-7, 2-9, 2-16, 3-4, 3-16, 3-17, 6-1, 6-3, 10-10, 10-11, 10-12, 13-8, A-11, A-12, A-13, A-14,

A-17, A-18, A-19, A-20, A-21, A-22, A-23, A-24, A-25, A-26, A-27, A-28, A-29, A-30, A-31,

A-32, A-35, A-36, A-38, A-39, A-40, A-44, A-45, A-46, A-56, A-57, A-58, A-60, A-64, A-67,

A-68, A-69, A-70, A-71, A-72, A-74, A-75, A-76, A-78, A-79, A-86, A-87, A-92, A-93, A-94,

A-96, A-99, A-100, A-103, A-104, A-105, A-107, A-108, A-110, A-111, A-112, A-113, A-114,

A-115, A-116, A-117, A-118, A-121, A-122, A-128, A-130, A-131, A-134, A-135, A-138,

B-7, B-9, B-10, B-11, B-12, B-13, B-14, B-23, B-24, B-25, B-26, B-68, B-70, B-93, B-95,

B-113, B-120, B-122, B-136, B-137, B-138, B-140, B-162, C-2, C-3, C-4, C-5, C-6, D-2,

D-14, D-27, D-31

Sign... 10-10

sign_extend.......... A-11, A-12, A-13, A-14, A-17, A-18, A-19, A-20, A-21, A-22, A-23, A-24, A-25, A-26, A-27,

A-28, A-29, A-30, A-31, A-32, A-35, A-36, A-38, A-40, A-56, A-57, A-58, A-60, A-64, A-67,

A-68, A-69, A-70, A-72, A-76, A-79, A-92, A-93, A-94, A-96, A-100, A-103, A-104, A-105,

A-107, A-108, A-110, A-111, A-112, A-113, A-114, A-115, A-116, A-118, A-122, A-128,

A-130, A-131, A-134, A-135, A-138, B-10, B-162, C-2, C-3, C-4, C-5, D-14, D-27

Signal ... 8-3, 8-7, A-8

SignalException ... A-8, A-11, A-12, A-33, A-34, A-35, A-50, A-58, A-67, A-68, A-70, A-79, A-94, A-103, A-114,

A-116, A-126, A-127, A-128, A-129, A-130, A-131, A-132, A-133, A-134, A-135, A-136,

A-137, A-138

SIO.. 4-17, 4-18, 4-19, 4-33, 5-2, 5-5, 5-7, 5-8, 5-9, 5-10, 5-25, 8-10, 12-6, 13-8, C-14

SIOINT.. 8-10

SIOP .. 4-19, 5-25

sll...12-10, 12-11, 12-12, 12-13, 12-14, 12-15, 12-16, 12-17, 12-18, 12-19, 12-20

SLL..3-15, A-74, A-78, A-104, A-141

SLLV ...3-15, A-74, A-78, A-105, A-141

SLT..3-15, A-82, A-83, A-106, A-141

SLTI... 3-14, A-82, A-83, A-107, A-141, B-163, C-41, D-40

SLTIU .. 3-14, A-82, A-83, A-108, A-141, B-163, C-41, D-40

SLTU...3-15, A-82, A-83, A-109, A-141

Index

X-20

SLW ..B-102

Snooping... 2-17

SPECIAL.. 5-22, A-9, A-141, B-163, C-41, D-40

SQ.. 3-5, 3-25, 13-8, A-141, B-4, B-162, B-163, C-41, D-40

SQRT ... 2-18, 3-26, D-35

SQRT.fmt ... 3-21, 10-14, D-41

Square .. 3-21

SquareRoot...D-35

SR.. 1-5, 4-16

SRA.. 3-15, A-110, A-141

SRAV ... 3-15, A-111, A-141

SRL.. 3-15, A-112, A-141

SRLV.. 3-15, A-113, A-141

sseg ... 6-7, 6-10

State... 6-6, 9-4

Status................... 1-5, 2-15, 3-5, 3-20, 3-21, 4-5, 4-16, 4-17, 4-18, 4-21, 4-25, 4-29, 5-2, 5-5, 5-7, 5-9, 5-11,

5-12, 5-13, 5-14, 5-16, 5-19, 5-23, 5-24, 5-25, 6-2, 6-6, 6-8, 6-9, 6-10, 6-11, 6-12, 6-13,

8-25, 10-2, 10-4, 10-7, 10-8, 10-9, 11-2, 11-8, 11-9, 12-3, 12-4, 13-4, C-1, C-7, C-9, C-13,

C-14, C-15, C-16

STATUS .. 9-2, 9-10, 9-11, 12-6, 13-5, 13-6

steering .. 2-6, 4-31

SteeringBits ..C-10

stepping ...1-2, 9-8, 9-10, B-20, B-21, B-22

StoreFPR D-2, D-4, D-5, D-12, D-13, D-16, D-17, D-18, D-19, D-20, D-23, D-24, D-28, D-30, D-31,

D-32, D-33, D-35, D-36, D-38, D-39

StoreMemory ... A-7, A-93, A-94, A-96, A-100, A-103, A-116, A-118, A-122, B-162

SUB..2-18, 3-15, 5-26, A-114, A-141, D-36

SUB.fmt ... 3-21, 10-14, D-41

Subroutine... 3-17

Subsequent.. 2-4, 6-17

Subtract... 3-15, 3-21, 3-24, B-3, B-5

SUBU..3-15, A-114, A-115, A-141

supervisor ..4-18, 5-15, 6-10, 6-12, 9-11, 13-5, 13-14

Supervisor............ 2-16, 2-19, 4-17, 4-18, 4-29, 5-2, 5-15, 5-22, 5-23, 6-6, 6-7, 6-10, 6-12, 9-2, 13-5, 13-6,

C-1, C-14, C-15

SUPERVISOR .. 9-5

suseg ... 6-7, 6-10

SW .. 3-4, A-5, A-116, A-141, B-163, C-41, D-40

SWC1..3-5, 3-21, 10-13, 13-2, A-141, B-163, C-41, D-37, D-40

SWC2.. A-142, B-165, C-42, D-41

Index

X-21

SWL ... 3-4, 3-8, A-117, A-118, A-121, A-141, B-163, C-41, D-40

SWR... 3-4, 3-8, A-117, A-121, A-122, A-141, B-163, C-41, D-40

SYNC................... 2-11, 2-12, 2-13, 3-19, 5-24, 6-17, 13-9, 13-16, 13-18, 13-20, A-125, A-141, C-13, C-27,

C-28, C-29, C-30, C-31, C-32, C-33, C-34, C-35, C-36, C-38, C-39, C-40

Synchronization ... 2-11, 3-19

Sys ..4-20, 5-8, 5-20

SYS... 8-3

SYSAACK.. 8-3, 8-9, 8-12, 8-13, 8-14, 8-16, 8-19, 8-22, 8-25, 8-26, 8-27, 8-28, 8-29

SYSADDR.. 8-3, 8-7

SYSASTART..8-3, 8-7, 8-9, 8-12, 8-13, 8-16, 8-19

SYSBE... 8-3, 8-7

Syscall..4-20, 5-2, 5-8, 5-9

SYSCALL..2-11, 3-18, 4-4, 5-10, 5-20, 9-7, 9-8, A-126, A-141

SYSDACK............................ 8-3, 8-10, 8-12, 8-13, 8-16, 8-17, 8-19, 8-20, 8-22, 8-25, 8-26, 8-27, 8-28, A-125

SYSDATA.. 8-3, 8-6, 8-7, 8-9, 8-16, 8-17

SYSDSTART... 8-3, 8-10, 8-12, 8-13, 8-16, 8-17, 8-19, 8-20, 8-25

SYSRD.. 8-3

SYSTSIZE...8-3, 8-9, 8-12, 8-13, 8-16, 8-19

SYSWR... 8-3

T
Tag ... 2-6, 2-7, 2-15, 4-5, C-9, C-11, C-12, C-13

TAG...C-6

TagHi... 2-15, 4-5, 4-31, 4-32

TagHI... C-10, C-11

TagLo .. 2-15, 4-5, 4-31, 4-32

TagLO ... C-9, C-10, C-11, C-12

tags ..4-31, C-9, C-12

TargetAddress... C-10, C-11

TEQ... 3-18, 5-27, 9-8, A-127, A-141

TEQI.. 3-18, 5-27, 9-8, A-128, A-142

TGE...3-18, 5-27, A-129, A-141

TGEI..3-18, 5-27, A-130, A-142

TGEIU...3-18, 5-27, A-131, A-142

TGEU..3-18, 5-27, A-132, A-141

timer ..4-13, 4-15, 4-16

TLB 1-2, 2-3, 2-6, 2-7, 2-15, 2-16, 3-20, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11, 4-12, 4-14, 4-17,

4-20, 4-29, 5-2, 5-7, 5-8, 5-9, 5-10, 5-11, 5-12, 5-16, 5-17, 5-18, 6-1, 6-2, 6-3, 6-4, 6-7,

6-8, 6-9, 6-12, 6-14, 6-15, 6-16, 6-17, 6-18, 6-19, 6-20, 12-6, A-6, A-56, A-57, A-58, A-62,

A-66, A-67, A-68, A-70, A-74, A-78, A-79, A-92, A-93, A-94, A-98, A-102, A-103, A-116,

A-120, A-124, B-10, B-162, C-6, C-7, C-8, C-28, C-37, C-38, C-39, C-40, D-26, D-37

Index

X-22

TLBEnteries ..C-37

TLBL .. 4-8, 4-20, 5-8, 5-16, 5-17

TLBP... 3-20, 4-6, 5-17, 5-18, 6-2, 6-20, C-37, C-42

TLBR..2-13, 3-20, 4-6, 6-20, C-38, C-42

TLBS.. 4-8, 4-20, 5-8, 5-16, 5-17

TLBWI...2-13, 3-20, 4-6, 4-8, 6-20, C-28, C-38, C-39, C-42

TLBWR ...2-13, 3-20, 4-7, 4-8, 6-20, C-28, C-38, C-40, C-42

TLT..3-18, 5-27, A-133, A-141

TLTI...3-18, 5-27, A-134, A-142

TLTIU ..3-18, 5-27, A-135, A-142

TLTU ...3-18, 5-27, A-136, A-141

TNE...3-18, 5-27, A-137, A-141

TNEI..3-18, 5-27, A-138, A-142

TPC... 12-3, 12-5, 12-6, 12-7

TPCE ..12-3, 12-5, 12-6

Trace...12-1, 12-2, 12-3

transaction ... 8-8, 8-10, 8-12, 8-14, 8-22

Translation ... 2-3, 6-2, 6-3, 6-4, 6-5, 6-18, 6-19, 6-20

translations .. 4-9, 6-1, A-92

Trap...................... 2-11, 3-18, 4-20, 5-2, 5-8, 5-9, 5-10, 5-27, 9-8, A-127, A-128, A-129, A-130, A-131, A-132,

A-133, A-134, A-135, A-136, A-137, A-138

TRAP ..4-4, 5-27, 9-7

TRIG .. 13-9, 13-20

Trigger.. 2-19, 13-6

Triplebyte ... 3-10, 3-12

TRUNC.L. ...D-38

TRUNC.L.fmt ... 3-21, 10-14, D-41

TRUNC.W...D-39

TRUNC.W.fmt .. 3-21, 10-14, D-41

U
U0 ..4-29, 9-2, 9-5, 9-11

U1 ... 4-29, 9-5, 9-11

UCA .. 9-7

UCAB... 2-4, 2-6, 2-7, 6-17, 9-9

unaligned ...3-8, 13-8, A-59, A-63, A-71, A-74, A-75, A-78, A-95, A-99, A-117, A-121

uncached 1-1, 2-4, 5-11, 5-12, 6-12, 6-16, 6-17, 8-12, 9-8, 9-9, 9-10, A-6, A-8, A-56, A-57, A-58, A-60,

A-64, A-67, A-68, A-70, A-72, A-76, A-79, A-91, A-92, A-93, A-94, A-96, A-100, A-103,

A-116, A-118, A-122, A-125, B-10, B-162, C-6, C-7

Uncached...2-4, 4-8, 4-24, 6-7, 6-17, 6-20, 8-8, 8-12, 9-7, 9-10

UndefinedResult .. A-8, A-11, A-12, A-13, A-14, A-38, A-40, A-86, A-87, A-110, A-111, A-112, A-113, A-114,

Index

X-23

A-115, B-7, B-9, B-11, B-12, B-13, B-14, B-23, B-24, B-25, B-26, B-68, B-70, B-93, B-95,

B-113, B-120, B-122

underflow 2-9, B-29, B-30, B-31, B-35, B-37, B-46, B-47, B-142, B-143, B-144, B-148, B-150, B-152,

B-155, B-157, B-159

Underflow.. B-31, B-35, B-37, B-144, B-148, B-150, B-152, B-155, B-157

UNIX ..A-39, B-8, B-67

unmapped...5-11, 5-12, 6-7, 6-12, 9-8, 9-10, 13-9, A-6, C-28, C-38, C-39, C-40

Unmapped .. 6-7

Unsigned...3-4, 3-14, 3-15, 3-16, 3-18, 3-23, 3-24, B-3, B-5, B-158

useg ..6-7, 6-8, 6-9

UW ..B-102

V
VA ..C-6, C-7, C-8, C-9, C-10, C-11, C-12

VALID..C-9

VALUE ..4-28, 4-30, 9-2

Value FPR...D-10

ValueFPR.. D-4, D-12, D-13, D-16

VAX ... 3-6

VPN..4-9, 5-15, 6-4, 6-5

VPN2.. 4-14, 6-16, C-39, C-40

W
WBB... 2-4, 4-29, 8-15, 9-6, 9-9

Wide...2-10, 2-11, 2-12, 2-13

wired ... 2-15, 4-5, 4-11

Wired...2-15, 4-5, 4-7, 4-11, 5-11

WORD ... A-7, A-70, A-79, A-116, A-122

writeback...A-91

Writeback ... 2-4, C-7, C-8, C-11, C-12, C-13

WRITEBACK...C-6, C-13

X
XOR ...3-15, 3-25, A-3, A-139, A-140, A-141, B-4, B-160

XORI .. 3-14, A-140, A-141, B-163, C-41, D-40

Index

X-24

Appendix A CPU Instruction Set Details

A-1

A. CPU Instruction Set Details

This appendix provides a detailed description of the operation of each instruction. The
instructions are listed in alphabetical order.

Exceptions that may occur due to the execution of each instruction are listed after the
description of each instruction. Descriptions of the immediate cause and manner of
handling exceptions are omitted from the instruction descriptions in this appendix.

Descriptions use a pseudocode notation explained in Section A.2.

For an overview of the instruction set, refer to Chapter 3 of the User’s Manual.

Appendix A CPU Instruction Set Details

A-2

A.1 Description of an Instruction
Each instruction description contains several sections that contain specific information
about the instruction. The following sections describe the contents of each section in detail.

A.1.1 Instruction Mnemonic and Name
The instruction mnemonic and name are printed as page headings for each page in the
instruction description.

A.1.2 Instruction Encoding Picture
The instruction word encoding is shown in pictorial form at the top of the instruction
description. The picture shows the values of all constant fields and the opcode names for
opcode fields in upper-case. It labels all variable fields with lower-case names that are
used in the instruction description. Fields that contain zeroes but are not named are
unused fields that are required to be zero.

A.1.3 Format
The assembler formats for the instruction and the architecture level at which the
instruction was originally defined are shown.

A.1.4 Purpose
This is a very short statement of the purpose of the instruction.

A.1.5 Description
If a one-line symbolic description of the instruction is feasible, it will appear immediately
to the right of the Description heading. The body of the section is a description of the
operation of the instruction in text, tables, and figures. This description complements the
high-level language description in the Operation section.

A.1.6 Restrictions
This section documents the restrictions on the instructions. Most restrictions fall in the
category of alignment requirements for memory addresses, valid values of operands, and
order of instructions necessary to gurantee correct execution.

A.1.7 Operation
This section describes the operation as pseudocode in a high-level language notation
resembling Pascal. The purpose of this section is to describe the operation of the
instruction clearly in a form with less ambiguity than prose.

A.1.8 Exceptions
This section lists the exceptions that can be caused by the operationoperationoperationoperation of the instruction. It
omits exceptions that can be caused by instruction fetch, performance counters, and
breakpoints. It also omits exceptions that can be caused by asynchronous external events,
e.g. interrupts. Although the Bus Error exception may be caused by the operation of a load,
store or PREF instruction this section does not list Bus Error for load, store or PREF
instructions because the relationship between these instructions and external error
conditions, like Bus Error is asynchronous and implementation specific.

Appendix A CPU Instruction Set Details

A-3

A.1.9 Programming Notes, Implementation Notes
These sections contain material that is useful for programmers and implementors
respectively but is not necessary to describe the instruction and does not belong in the
description sections.

A.2 Instruction Description Notation and Functions
The Operation sections of the instruction descriptions describe the operation performed by
each instruction using a high-level language notation, or pseudocode. Symbols, functions,
and structures used in the Operation sections are described here.

A.2.1.1 Pseudocode Language Statement Execution

Each of the high-level language statements in an operation description is executed in
sequential order (as modified by conditional and loop constructs).

A.2.1.2 Pseudocode Symbols

Special symbols used in the notation are described in Table A-1.

Table A-1. Symbols in Instruction Operation Statements

Symbol Meaning

← Assignment.
=, ≠ Tests for equality and inequality.

|| Bit string concatenation.
Xy A y-bit string formed by y copies of the single-bit value x.

Xy..z Selection of bits y through z of bit string x.

+, − Two’s complement or floating point arithmetic: addition, subtraction.
*, × Two’s complement or floating point multiplication (both used for either).
div Two’s complement integer division.

Mod Two’s complement modulo.
/ Floating point division.
< Two’s complement less than comparison.

Not Bit-wise logical NOT.
Nor Bit-wise logical NOR.
Xor Bit-wise logical XOR.
And Bit-wise logical AND.
or Bit-wise logical OR.

GPRLEN The length in bits (64 in the C790), of the CPU General Purpose Registers.
GPR[x] CPU General Purpose Register x. The content of GPR[0] is always zero.

CPR[z, x] Coprocessor unit z, general register x.
CCR[z, x] Coprocessor unit z, control register x.

CPCOND[z] Coprocessor unit z condition signal.
BigEndian Big-endian made as configured at reset (0→Little, 1→Big) from core boundary signal.

Appendix A CPU Instruction Set Details

A-4

Symbol Meaning

I:,
I+n:,
I−n:

This occurs as a prefix to operation description lines and functions as a label. It indicates
the instruction time during which the effects of the pseudocode lines appears to occur
(i.e., when the pseudocode is “executed”). Unless otherwise indicated, all effects of the
current instruction appear to occur during the instruction time of the current instruction.
No label is equivalent to a time label of “I:”.
Sometimes effects of an instruction appear to occur either earlier or later-during the
instruction time of another instruction. When that happens, the instruction operation is
written in sections labeled with the instruction time, relative to the current instruction I, in
which the effect of that pseudocode appears to occur. For example, an instruction may
have a result that is not available until after the next instruction. Such an instruction will
have the portion of the instruction operation description that writes the result register in a
section labeled “I+1:”.
The effect of pseudocode statements for the current instruction labeled “I+1:” appears to
occur “at the same time” as the effect of pseudocode statements labeled “I:” for the
following instruction. Within one pseudocode sequence the effects of the statements
takes place in order. However, between sequences of statements for different
instructions that occur “at the same time”, there is no order defined. Programs must not
depend on a particular order of evaluation between such sections.

PC
The Program Counter value. During the instruction time of an instruction this is the
address of the instruction word. The address of the instruction that occurs during the
next instruction time is determined by assigning a value to PC during an instruction time.
If no value is assigned to PC during instruction time by any pseudocode statement, it is
automatically incremented by 4 before the next instruction time. A taken branch assigns
the target address to PC during the instruction time of the instruction in the branch delay
slot.

PSIZE The SIZE, number of bits, of Physical address in an implementation.

A.2.2 Definitions of Pseudocode Functions Used in
Instruction Descriptions

A variety of functions are used in the pseudocode employed in the instruction descriptions.
These functions are used to make the pseudocode more readable and also to abstract
implementation-specific behavior. These functions are defined in this section. Certain
additional functions specific to a particular coprocessor are described at the beginning of
the appendix for that coprocessor.

A.2.2.1 Coprocessor General Register Access Pseudocode Functions

Defined coprocessors, except for COP0, have instructions to exchange words and
doublewords and quadwords between coprocessor general registers and the rest of the
system. What a coprocessor does with a word or doubleword supplied to it, and how a
coprocessor supplies a word or doubleword, is defined by the coprocessor itself. The
functions are listed in Table A-2.

Appendix A CPU Instruction Set Details

A-5

Table A-2. Coprocessor General Register Access Functions

COP_LW(z, rt, memword)
z: The coprocessor unit number.
rt: Coprocessor general register specifier.
Memword: A 32-bit word value supplied to the coprocessor.

This is the action taken by coprocessor z when supplied with a word from memory
during a load word operation. The action is coprocessor-specific. The typical action
would be to store the contents of memword in coprocessor general register rt.
COP_LD(z, rt, memdouble)

z: The coprocessor unit number.
rt: Coprocessor general register specifier.
Memdouble: 64-bit doubleword value supplied to the coprocessor.

This is the action taken by coprocessor z when supplied with a doubleword from
memory during a load doubleword operation. The action is coprocessor-specific. The
typical action would be to store the contents of memdouble in coprocessor general
register rt.
Dataword ←←←← COP_SW(z, rt)

z: The coprocessor unit number.
rt: Coprocessor general register specifier.
Dataword: 32-bit word value.

This defines the action taken by coprocessor z to supply a word of data during a store
word operation. The action is coprocessor-specific. The typical action would be to
supply the contents of low-order word in coprocessor general register rt.
Datadouble ←←←← COP_SD(z, rt)

z: The coprocessor unit number.
rt: Coprocessor general register specifier.
Datadouble: 64-bit doubleword value.

This defines the action taken by coprocessor z to supply a doubleword of data during
a store doubleword operation. The action is coprocessor-specific. The typical action
would be to supply the contents of the doubleword coprocessor general register rt.

Appendix A CPU Instruction Set Details

A-6

A.2.2.2 Load and Store Memory Pseudocode Functions

Regardless of byte-numbering order (endianness), the address of a halfword, word, or
doubleword is the smallest byte address among the bytes in the object. For a big-endian
ordering this is the most-significant byte; for a little-endian ordering this is the least-
significant byte.

In the operation description pseudocode for load and store operations, the functions listed
in Table A-3 are used to summarize the handling of virtual addresses and accessing
physical memory.

The size of the data item to be loaded or stored is passed in the AccessLength field. The
valid constant names and values are shown in Table A-4. The bytes within the addressed
unit of memory (quadword for 128-bit processors) which are used can be determined
directly from the AccessLength and the four low-order bits of the address.

Table A-3. Load and Store Functions

(pAddr, CCA) ←←←← AddressTranslation (vAddr, IorD, LorS)
pAddr: Physical Address.
CCA: Cache Coherence Algorithm: the method used to access caches and

memory and resolve the reference.
vAddr: Virtual Address.
IorD: Indicates whether access is for Instruction or Data.
LorS: Indicates whether access is for Load or Store

Translate a virtual address to a physical address and a cache coherence algorithm describing the
mechanism used to resolve the memory reference.
Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the
corresponding physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the
reference. If the virtual address is in one of the unmapped address spaces the physical address and
CCA are determined directly by the virtual address. If the virtual address is in one of the mapped
address spaces then the TLB is used to determine the physical address and access type; if the
required translation is not present in the TLB or the desired access is not permitted the function fails
and an exception is taken.

MemElem ←←←← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)
MemElem: Data is returned in a fixed width with a natural alignment. The width is the

same size as the CPU general purpose register.
CCA: Cache Coherence Algorithm: the method used to access caches and

memory and resolve the reference.
AccessLength: Length, in bytes, of access.
pAddr: Physical Address.
vAddr: Virtual Address.
IorD: Indicates whether access is for Instructions or Data.

Load a value from memory.
Uses the cache and main memory as specified in the Cache Coherence Algorithm (CCA) and the sort
of access (IorD) to find the contents of AccessLength memory bytes starting at physical location pAddr.
The data is returned in the fixed width naturally-aligned memory element (MemElem). The low-order
two, three, or four bits of the address and the AccessLength indicate which of the bytes within
MemElem needs to be given to the processor. If the memory access type of the reference is uncached
then only the referenced bytes are read from memory ad valid within the memory element. If the access
type is cached, and the data is not present in cache, an implementation specific size and alignment
block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, the block
is the entire memory element.

Appendix A CPU Instruction Set Details

A-7

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)
CCA: Cache Coherence Algorithm: the method used to access caches and

memory and resolve the reference.
AccessLength: Length, in bytes, of access.
MemElem: Data in the width and alignment of a memory element. The width is the

same size as the CPU general purpose register. For a partial-memory-
element store, only the bytes that will be stored must be valid.

pAddr: Physical Address.
vAddr: Virtual Address.

Store a value to memory.
The specified data is stored into the physical location pAddr using the memory hierarchy (data caches
and main memory) as specified by the Cache Coherence Algorithm (CCA). The MemElem contains
the data for an aligned, fixed-width memory element, though only the bytes that will actually be stored
to memory need to be valid. The low-order four bits of pAddr and the AccessLength field indicates
which of the bytes within the MemElem data should actually be stored; only these bytes in memory will
be changed.

Prefetch (CCA, pAddr, vAddr, DATA, hint)
CCA: Cache Coherence Algorithm: the method used to access caches and

memory and resolve the reference.
pAddr: Physical Address.
vAddr: Virtual Address.
DATA: Indicates that access is for DATA.
hint: Hint that indicates the possible use of the data

Prefetch data from memory.
Prefetch is an advisory instruction for which an implementation specific action is taken. The action
taken may increase performance but must not change the meaning of the program or alter
architecturally-visible state.

Table A-4. AccessLength Specifications for Loads / Stores

AccessLength
name

Value Meaning

QUADWORD 15 16 bytes (128 bits)
DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

Appendix A CPU Instruction Set Details

A-8

A.2.2.3 Miscellaneous Functions

Table A-5 describes additional miscellaneous functions for CPU instruction descriptions.

Table A-5. Miscellaneous Functions

SyncOperation (stype)
stype: Type of synchronization operation to be performed.

Based on the value of stype either a memory barrier operation is performed or a pipeline barrier
operation is performed.
In case of a memory barrier all pending loads and stores are retired. Loads are retired when the
destination register is written. Stores are retired when the stored data (in store buffers or write buffers) is
either stored in the data cache, or sent on the processor bus.
All uncached accelerated data gathering operation is terminated.
The uncached accelerated buffer is invalidated.
All bus read processes due to load/store/pref/cache instructions are completed.
All pending bus write processes in the write back buffer are completed.
In case of pipeline barrier all instructions prior to the barrier are completed before the instructions
following the barrier operation are fetched. Note that the barrier operation does not wait for any
instruction which was issued prior to the barrier operation but not retired (e.g., multiply, divide, multicycle
COP1 operations or a pending load which were issued prior to the pipeline barrier operation).
SignalException (Exception)

Exception; The exception condition that exists.
 Signal an exception condition.
This will result in an exception that aborts the instruction. The instruction operation pseudocode will
never see a return from this function call.
UndefinedResult()
This function indicates that the result of the operation is undefined.
NullifyCurrentInstruction()
Nullify the current instruction.
This occurs during the instruction time for some instruction and that instruction is not executed further.
This appears for branch-likely instructions during the execution of the instruction in the delay slot and it
kills the instruction in the delay slot.
CoprocessorOperation (z, cop_fun)

z: Coprocessor unit number
cop_fun: Coprocessor function from function field of instruction

Perform the specified Coprocessor operation.

Appendix A CPU Instruction Set Details

A-9

A.3 CPU Instruction Formats
A CPU instruction is a single 32-bit aligned word. There are three instruction formats:
Immediate (I-type), Jump (J-type), and Register (R-type). These formats are shown in
Figure A-1 below:

I-Type (Immediate)

op rs rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

J-Type (Jump)

op target

31 26 25 0

6 26

R-Type (Register)

op rs rt funct

6 5 5 6

rd sa
5 5

31 26 25 21 20 16 15 011 10 6 5

op 6-bit primary operation code
rd 5-bit destination register specifier
rs 5-bit source register specifier
rt 5-bit target (source/destination) register specification or

branch condition
immediate 16-bit signed immediate used for: logical operands, arithmetic

signed operands, load/store address byte offsets, PC-relative
branch signed instruction displacement

target 26-bit index shifted left two bits to supply the low-order 28 bits
of the jump target address.

sa 5-bit shift amount
funct 6-bit function field used to specify functions within the primary

operation code value SPECIAL

Figure A-1. CPU Instruction Formats

Appendix A CPU Instruction Set Details

A-10

A.4 Instruction Descriptions
The user-level CPU instructions are described in alphabetical order in this section.

Appendix A CPU Instruction Set Details

A-11

ADD ADDAdd Word

SPECIAL
000000

ADD
100000rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: ADD rd, rs, rt

Purpose: To add 32-bit integers. If overflow occurs, then trap.

Description: rd ← rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result. If the addition results in 32-bit 2’s complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does
not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

Operation:
If (NotWordValue (GPR[rs] 63..0) or NotWordValue (GPR[rt] 63..0)) then UndefinedResult()endif
temp ← GPR[rs] 63..0 + GPR[rt] 63..0

if (32_bit_arithmetic_overflow) then
SignalException (IntegerOverflow)

else
GPR[rd]63..0 ← sign_extend (temp31..0)

endif
Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but, does not trap on overflow.

Appendix A CPU Instruction Set Details

A-12

ADDI ADDIAdd Immediate Word

ADDI
001000 immediatertrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: ADDI rt, rs, immediate

Purpose: To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs to produce a 32-bit
result. If the addition results in 32-bit 2’s complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does
not overflow, the 32-bit result is placed into GPR rt.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result
of the operation is undefined.

Operation:
if (NotWordValue (GPR[rs] 63..0)) then UndefinedResult() endif
temp ← GPR[rs] 63..0 + sign_extend (immediate)
if (32_bit_arithmetic_overflow) then

SignalException (IntegerOverflow)
else

GPR[rt]63..0 ← sign_extend (temp31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but, does not trap on overflow.

Appendix A CPU Instruction Set Details

A-13

ADDIU ADDIUAdd Immediate Unsigned Word

ADDIU
001001 immediatertrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: ADDIU rt, rs, immediate

Purpose: To add a constant to a 32-bit integer.

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit
arithmetic result is placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result
of the operation is undefined.

Operation:
if (NotWordValue (GPR[rs] 63..0)) then UndefinedResult() endif
temp ← GPR[rs] 63..0 + sign_extend (immediate)
GPR[rt] 63..0 ← sign_extend (temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

Appendix A CPU Instruction Set Details

A-14

ADDU ADDUAdd Unsigned Word

SPECIAL
000000

ADDU
100001rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: ADDU rd, rs, rt

Purpose: To add 32-bit integers.

Description: rd ← rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit
arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

Operation:
if (NotWordValue (GPR[rs] 63..0) or NotWordValue (GPR[rt] 63..0)) then UndefinedResult() endif
temp ← GPR[rs] 63..0 + GPR[rt] 63..0

GPR[rt] 63..0 ←sign_extend (temp31..0)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

Appendix A CPU Instruction Set Details

A-15

AND ANDAnd

SPECIAL
000000

AND
100100rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: AND rd, rs, rt

Purpose: To do a bitwise logical AND.

Description: rd ← rs AND rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND
operation. The result is placed into GPR rd.

Restrictions:
None

Operation:
GPR[rd] 63..0 ← GPR[rs] 63..0 and GPR[rt] 63..0

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-16

ANDI ANDIAnd Immediate

ANDI
001100 immediatertrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: ANDI rt, rs, immediate

Purpose: To do a bitwise logical AND with a constant.

Description: rt ← rs AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR
rs in a bitwise logical AND operation. The result is placed into GPR rt.

Restrictions:

None

Operation:
GPR[rt] 63..0 ← zero_extend (immediate) and GPR[rs] 63..0

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-17

BEQ BEQBranch on Equal

BEQ
000100 offsetrtrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: BEQ rs, rt, offset

Purpose: To compare GPRs then do a PC-relative conditional branch.

Description: if (rs = rt) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after
the instruction in the delay slot is executed.

Restriction:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← (GPR[rs] 63..0 = GPR[rt] 63..0)
Ι+1: if condition then

PC ← PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-18

BEQL BEQLBranch on Equal Likely

BEQL
010100 offsetrtrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: BEQL rs, rt, offset

Purpose: To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if
the branch is taken.

Description: if (rs = rt) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the
delay slot is not executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← (GPR[rs] 63..0 = GPR[rt] 63..0)
Ι+1: if condition then

PC ← PC + tgt_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-19

BGEZ BGEZBranch on Greater Than or Equal to Zero

BGEZ
00001

REGIMM
000001 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: BGEZ rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs ≥ 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the
effective target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 ≥ 0GPRLEN

Ι+1: if condition then
PC ← PC + tgt_offset

endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-20

BGEZAL BGEZALBranch on Greater Than or Equal to Zero and Link

BGEZAL
10001

REGIMM
000001 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: BGEZAL rs, offset

Purpose: To test a GPR then do a PC-relative conditional procedure call.

Description: if (rs ≥ 0) then procedure_call

Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch, where execution would continue after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the
effective target address after the instruction in the delay slot is executed.

Restriction:

GPR 31 must not be used for the source register rs, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is
undefined. This restriction permits an exception handler to resume execution by re-
executing the branch when an exception occurs in the branch delay slot.

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 ≥ 0GPRLEN

GPR[31] 63..0 ← zero_extend (PC+8)
Ι+1: if condition then

PC ← PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump and link (JAL) or jump and link register (JALR) instructions for procedure calls to
more distant addresses.

Appendix A CPU Instruction Set Details

A-21

BGEZALL BGEZALLBranch on Greater Than or Equal to Zero and Link
Likely

BGEZALL
10011

REGIMM
000001 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: BGEZALL rs, offset

Purpose: To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only
if the branch is taken.

Description: if (rs ≥ 0) then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch, where execution would continue after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not not not not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the
effective target address after the instruction in the delay slot is executed. If the branch is
not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is
undefined. This restriction permits an exception handler to resume execution by re-
executing the branch when an exception occurs in the branch delay slot.

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 ≥ 0GPRLEN

GPR[31] 63..0 ← zero_extend (PC+8)
Ι+1: if condition then

PC ← PC + tgt_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump and link (JAL) or jump and link register (JALR) instructions for procedure calls to
more distant addresses.

Appendix A CPU Instruction Set Details

A-22

BGEZL BGEZLBranch on Greater Than or Equal to Zero Likely

BGEZL
00011

REGIMM
000001 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: BGEZL rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if (rs ≥ 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the
effective target address after the instruction in the delay slot is executed. If the branch is
not taken, the instruction in the delay slot is not executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 ≥ 0GPRLEN

Ι+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-23

BGTZ BGTZBranch on Greater Than Zero

0
00000

BGTZ
000111 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: BGTZ rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs > 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to
the effective target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 > 0GPRLEN

Ι+1: if condition then
PC ← PC + tgt_offset

endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-24

BGTZL BGTZLBranch on Greater Than Zero Likely

0
00000

BGTZL
010111 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: BGTZL rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if (rs > 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to
the effective target address after the instruction in the delay slot is executed. If the branch
is not taken, the instruction in the delay slot is not executed.

Restrictions:

None

Operations:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 > 0GPRLEN

Ι+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch is ± 128 KB. Use jump (J)
or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-25

BLEZ BLEZBranch on Less Than or Equal to Zero

0
00000

BLEZ
000110 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: BLEZ rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs ≤ 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of the GPR rs are less than or equal to zero (sign bit is 1 or value is zero),
branch to the effective target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 ≤ 0GPRLEN

Ι+1: if condition then
PC ← PC + tgt_offset

endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-26

BLEZL BLEZLBranch on Less Than or Equal to Zero Likely

0
00000

BLEZL
010110 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: BLEZL rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if (rs ≤ 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not not not not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero),
branch to the effective target address after the instruction in the delay slot is executed. If
the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 ≤ 0GPRLEN

Ι+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-27

BLTZ BLTZBranch on Less Than Zero

BLTZ
00000

REGIMM
000001 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: BLTZ rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs < 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 < 0GPRLEN

Ι+1: if condition then
PC ← PC + tgt_offset

endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-28

BLTZAL BLTZALBranch on Less Than Zero and Link

BLTZAL
10000

REGIMM
000001 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: BLTZAL rs, offset

Purpose: To test a GPR then do a PC-relative conditional procedure call.

Description: if (rs < 0) then procedure_call

Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch (notnotnotnot the branch itself), where execution would continue
after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch, in the branch delay slot, to form a PC-relative
effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is
undefined. This restriction permits an exception handler to resume execution by re-
executing the branch when an exception occurs in the branch delay slot.

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 < 0GPRLEN

GPR[31] 63..0 ← zero_extend (PC+8)
Ι+1: if condition then

PC ← PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump and link (JAL) or jump and link register (JALR) instructions for procedure calls to
more distant addresses.

Appendix A CPU Instruction Set Details

A-29

BLTZALL BLTZALLBranch on Less Than Zero and Link Likely

BLTZALL
10010

REGIMM
000001 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: BLTZALL rs, offset

Purpose: To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only
if the branch is taken.

Description: if (rs < 0) then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch (notnotnotnot the branch itself), where execution would continue
after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch, in the branch delay slot, to form a PC-relative
effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is
undefined. This restriction permits an exception handler to resume execution by re-
executing the branch when an exception occurs in the branch delay slot.

Operation:
Ι: tgt_offset← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 < 0GPRLEN

GPR[31] 63..0 ← zero_extend (PC+8)
Ι+1: if condition then

PC ← PC + tgt_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range ± 128 KB. Use jump
and link (JAL) or jump and link register (JALR) instructions for procedure calls to more
distant addresses.

Appendix A CPU Instruction Set Details

A-30

BLTZL BLTZLBranch on Less Than Zero Likely

BLTZL
00010

REGIMM
000001 offsetrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: BLTZL rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if (rs < 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← GPR[rs] 63..0 < 0GPRLEN

Ι+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-31

BNE BNEBranch on Not Equal

BNE
000101 offsetrtrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: BNE rs, rt, offset

Purpose: To compare GPRs then do a PC-relative conditional branch.

Description: if (rs ≠ rt) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← (GPR[rs] 63..0 ≠ GPR[rt] 63..0)
Ι+1: if condition then

PC ← PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-32

BNEL BNELBranch on Not Equal Likely

BNEL
010101 offsetrtrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: BNEL rs, rt, offset

Purpose: To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if
the branch is taken.

Description: if (rs ≠ rt) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:

None

Operation:
Ι: tgt_offset ← sign_extend (offset || 02)

condition ← (GPR[rs] 63..0 ≠ GPR[rt] 63..0)
Ι+1: if condition then

PC ← PC + tgt_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix A CPU Instruction Set Details

A-33

BREAK BREAKBreakpoint

SPECIAL
000000

BREAK
001101code

 31 26 25 6 5 0

 6 20 6

MIPS I
Format: BREAK

Purpose: To cause a Breakpoint exception.

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to
the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Restrictions:

None

Operation:
SignalException (Breakpoint)

Exceptions:

Breakpoint

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-34

DADD DADDDoubleword Add

SPECIAL
000000

DADD
101100rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DADD rd, rs, rt

Purpose: To add 64-bit integers. If overflow occurs, then trap.

Description: rd ← rs + rt

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs to produce a
64-bit result. If the addition results in 64-bit 2’s complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does
not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

None

Operation:
temp ← GPR[rs] 63..0 + GPR[rt] 63..0

if (64_bit_arithmetic_overflow) then
SignalException (IntegerOverflow)

else
GPR[rd] 63..0 ← temp

endif
Exceptions:

Integer Overflow

Programming Notes:

DADDU performs the same arithmetic operation but, does not trap on overflow.

Appendix A CPU Instruction Set Details

A-35

DADDI DADDIDoubleword Add Immediate

DADDI
011000 immediatertrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS III
Format: DADDI rt, rs, immediate

Purpose: To add a constant to a 64-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 64-bit value in GPR rs to produce a 64-bit
result. If the addition results in 64-bit 2’s complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does
not overflow, the 64-bit result is placed into GPR rt.

Restrictions:

None

Operation:
temp ← GPR[rs] 63..0 + sign_extend (immediate)
if (64_bit_arithmetic_overflow) then

SignalException (IntegerOverflow)
else

GPR[rt] 63..0 ← temp
endif

Exceptions:

Integer Overflow

Programming Notes:

DADDIU performs the same arithmetic operation but, does not trap on overflow.

Appendix A CPU Instruction Set Details

A-36

DADDIU DADDIUDoubleword Add Immediate Unsigned

DADDIU
011001 immediatertrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS III
Format: DADDIU rt, rs, immediate

Purpose: To add a constant to a 64-bit integer.

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 64-bit value in GPR rs and the 64-bit
arithmetic result is placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
GPR[rt] 63..0 ← GPR[rs] 63..0 + sign_extend (immediate)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

Appendix A CPU Instruction Set Details

A-37

DADDU DADDUDoubleword Add Unsigned

SPECIAL
000000

DADDU
101101rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DADDU rd, rs, rt

Purpose: To add 64-bit integers.

Description: rd ← rs + rt

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs and the 64-
bit arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
GPR[rd] 63..0 ← GPR[rs] 63..0 + GPR[rt] 63..0

Exception:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

Appendix A CPU Instruction Set Details

A-38

DIV DIVDivide Word

SPECIAL
000000

DIV
011010rt 0

00 0000 0000rs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS I
Format: DIV rs, rt

Purpose: To divide 32-bit signed integers.

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both
operands as signed values. The 32-bit quotient is placed into special register LO and the
32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

If the divisor in GPR rt is zero, the arithmetic result value is undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
q ← GPR[rs]31..0 div GPR[rt]31..0

LO63..0 ← sign_extend (q31..0)
r ← GPR[rs]31..0 mod GPR[rt]31..0

HI63..0 ← sign_extend (r31..0)
Exceptions:

None

Supplementary Explanation:

Normally, when 0x80000000 (-2147483648) the signed minimum value is divided by
0xFFFFFFFF (-1), the operation will result in an overflow. However, in this instruction an
overflow exception doesn’t occur and the result will be as follows:

Quotient is 0x80000000 (-2147483648), and remainder is 0x00000000 (0).

This sign of the quotient and the remainder is based on the signs of the dividend and the
divisor as shown in the table below:

Appendix A CPU Instruction Set Details

A-39

Dividend Divisor Quotient Remainder

Positive Positive Positive Positive

Positive Negative Negative Positive

Negative Positive Negative Negative

Negative Negative Positive Negative

Programming Notes:

In the C790, the integer divide operation proceeds asynchronously and allows other CPU
instructions to execute before it is retired. An attempt to read LO or HI before the results
are written will wait (interlock) until the results are ready. Asynchronous execution does
not affect the program result, but offers an opportunity for performance improvement by
scheduling the divide so that other instructions can execute in parallel.

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow
conditions should be detected and some action taken, then the divide instruction is
typically followed by additional instructions to check for a zero divisor and / or for overflow.
If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within
the program itself or more typically, the system software; one possibility is to take a
BREAK exception with a code field value to signal the problem to the system software.

As an example, the C programming language in a UNIX environment expects division by
zero to either terminate the program or execute a program-specified signal handler. C
does not expect overflow to cause any exceptional condition. If the C compiler uses a divide
instruction, it also emits code to test for a zero divisor and execute a BREAK instruction to
inform the operating system if one is detected.

In the C790, sign-extended 32-bit values (bits 63..31) are ignored on divide operation.

Appendix A CPU Instruction Set Details

A-40

DIVU DIVUDivide Unsigned Word

SPECIAL
000000

DIVU
011011rt 0

00 0000 0000rs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS I
Format: DIVU rs, rt

Purpose: To divide 32-bit unsigned integers.

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both
operands as unsigned values. The 32-bit quotient is placed into special register LO and
the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

If the divisor in GPR rt is zero, the arithmetic result is undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)
LO63..0 ← sign_extend (q31..0)
r ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)
HI63..0 ← sign_extend (r31..0)

Exceptions:

None

Programming Notes:

See the Programming Notes for the DIV instruction.

Appendix A CPU Instruction Set Details

A-41

DSLL DSLLDoubleword Shift Left Logical

SPECIAL
000000

DSLL
111000rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSLL rd, rt, sa

Purpose: To left shift a doubleword by a fixed amount 0 to 31 bits.

Description: rd ← rt << sa

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied
bits; the result is placed in GPR rd. The bit shift count in the range 0 to 31 is specified by
sa.

Restrictions:

None

Operation:
s ← 0 || sa
GPR[rd] 63..0 ←GPR[rt](63-s)..0 || 0s

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-42

DSLL32 DSLL32Doubleword Shift Left Logical Plus 32

SPECIAL
000000

DSLL32
111100rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSLL32 rd, rt, sa

Purpose: To left shift a doubleword by a fixed amount 32 to 63 bits.

Description: rd ← rt << (sa + 32)

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied
bits; the result is placed in GPR rd. The bit shift count in the range 32 to 63 is specified by
sa + 32.

Restrictions:

None

Operation:
s ← 1 || sa /* 32 + sa */
GPR[rd] 63..0 ← GPR[rt](63-s)..0 || 0s

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-43

DSLLV DSLLVDoubleword Shift Left Logical Variable

SPECIAL
000000

DSLLV
010100rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSLLV rd, rt, rs

Purpose: To left shift a doubleword by a variable number of bits.

Description: rd ← rt << rs

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied
bits; the result is placed in GPR rd. The bit shift count in the range 0 to 63 is specified by
the low-order six bits in GPR rs.

Restrictions:

None

Operation:
s ← 0 || GPR[rs]5..0

GPR[rd] 63..0 ← GPR[rt](63-s)..0 || 0s

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-44

DSRA DSRADoubleword Shift Right Arithmetic

SPECIAL
000000

DSRA
111011rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSRA rd, rt, sa

Purpose: To arithmetic right shift a doubleword by a fixed amount 0 to 31 bits.

Description: rd ← rt >> sa (arithmetic)

The 64-bit doubleword contents of GPR rt are shifted right, duplicating the sign bit (63)
into the emptied bits; the result is placed in GPR rd. The bit shift count in the range 0 to
31 is specified by sa.

Restrictions:

None

Operation:
s ← 0 || sa
GPR[rd] 63..0 ← (GPR[rt]63)s || GPR[rt]63..s

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-45

DSRA32 DSRA32Doubleword Shift Right Arithmetic Plus 32

SPECIAL
000000

DSRA32
111111rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSRA32 rd, rt, sa

Purpose: To arithmetic right shift a doubleword by a fixed amount 32-63 bits.

Description: rd ← rt >> (sa + 32) (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the
emptied bits; the result is placed in GPR rd. The bit shift count in the range 32 to 63 is
specified by sa + 32.

Restrictions:

None

Operation:
s ←1 || sa /* 32 + sa */
GPR[rd] 63..0 ←(GPR[rt]63)s || GPR[rt]63..s

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-46

DSRAV DSRAVDoubleword Shift Right Arithmetic Variable

SPECIAL
000000

DSRAV
010111rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSRAV rd, rt, rs

Purpose: To arithmetic right shift a doubleword by a variable number of bits.

Description: rd ← rt >> rs (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the
emptied bits; the result is placed in GPR rd. The bit shift count in the range 0 to 63 is
specified by the low-order six bits in GPR rs.

Restrictions:

None

Operation:
s ← GPR[rs]5..0

GPR[rd] 63..0 ← (GPR[rt]63)s || GPR[rt]63..s

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-47

DSRL DSRLDoubleword Shift Right Logical

SPECIAL
000000

DSRL
111010rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSRL rd, rt, sa

Purpose: To logical right shift a doubleword by a fixed amount 0 to 31 bits.

Description: rd ← rt >> sa (logical)

The doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits;
the result is placed in GPR rd. The bit shift count in the range 0 to 31 is specified by sa.

Restrictions:

None

Operation:
s ← 0 || sa
GPR[rd] 63..0 ← 0s || GPR[rt]63..s

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-48

DSRL32 DSRL32Doubleword Shift Right Logical Plus 32

SPECIAL
000000

DSRL32
111110rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSRL32 rd, rt, sa

Purpose: To logical right shift a doubleword by a fixed amount 32 to 63 bits.

Description: rd ← rt >> (sa + 32) (logical)

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the
emptied bits; the result is placed in GPR rd. The bit shift count in the range 32 to 63 is
specified by sa + 32.

Restrictions:

None

Operation:
s ← 1 || sa /* 32 + sa * /
GPR[rd] 63..0 ← 0s || GPR[rt]63..s

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-49

DSRLV DSRLVDoubleword Shift Right Logical Variable

SPECIAL
000000

DSRLV
010110rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSRLV rd, rt, rs

Purpose: To logical right shift a doubleword by a variable number of bits.

Description: rd ← rt >> rs (logical)

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the
emptied bits; the result is placed in GPR rd. The bit shift count in the range 0 to 63 is
specified by the low-order six bits in GPR rs.

Restrictions:

None

Operation:
s ← GPR[rs]5..0

GPR[rd] 63..0 ←0s || GPR[rt]63..s

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-50

DSUB DSUBDoubleword Subtract

SPECIAL
000000

DSUB
101110rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSUB rd, rs, rt

Purpose: To subtract 64-bit integers; trap if overflow.

Description: rd ← rs - rt

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs to
produce a 64-bit result. If the subtraction results in 64-bit 2’s complement arithmetic
overflow then the destination register is not modified and an Integer Overflow exception
occurs. If it does not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

None

Operation:
temp ← GPR[rs] 63..0 - GPR[rt] 63..0

if (64_bit_arithmetic_overflow) then
SignalException (IntegerOverflow)

else
GPR[rd] 63..0 ← temp

endif
Exceptions:

Integer Overflow

Programming Notes:

DSUBU performs the same arithmetic operation but, does not trap on overflow.

Appendix A CPU Instruction Set Details

A-51

DSUBU DSUBUDoubleword Subtract Unsigned

SPECIAL
000000

DSUBU
101111rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS III
Format: DSUBU rd, rs, rt

Purpose: To subtract 64-bit integers.

Description: rd ← rs - rt

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs and
the 64-bit arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
GPR[rd] 63..0 ← GPR[rs] 63..0 - GPR[rt] 63..0

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

Appendix A CPU Instruction Set Details

A-52

J JJump

J
000010 instr_index

 31 26 25 0

 6 26

MIPS I
Format: J target

Purpose: To branch within the current 256 MB aligned region.

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the
“current” 256 MB aligned region. The low 28 bits of the target address is the instr_index
field shifted left 2 bits. The remaining upper bits are the corresponding bits of the address
of the instruction in the delay slot (notnotnotnot the jump itself).

Jump to the effective target address. Execute the instruction following the jump, in the
branch delay slot, before jumping.

Restrictions:

None

Operation:
Ι:
Ι+1: PC ← PC31..28 || instr_index || 02

Exceptions:

None

Programming Notes:

Forming the branch target address by concatenating PC and index bits rather than adding
a signed offset to the PC is an advantage if all program code addresses fit into a 256 MB
region aligned on a 256 MB boundary. It allows a branch to anywhere in the region from
anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the branch instruction is in the last word
of a 256 MB region and can therefore only branch to the following 256 MB region
containing the branch delay slot.

Appendix A CPU Instruction Set Details

A-53

JAL JALJump and Link

JAL
000011 instr_index

 31 26 25 0

 6 26

MIPS I
Format: JAL target

Purpose: To procedure call within the current 256 MB aligned region.

Description:

Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch, where execution would continue after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the
“current” 256 MB aligned region. The low 28 bits of the target address is the instr_index
field shifted left 2 bits. The remaining upper bits are the corresponding bits of the address
of the instruction in the delay slot (notnotnotnot the jump itself).

Jump to the effective target address. Execute the instruction following the jump, in the
branch delay slot, before jumping.

Restrictions:

None

Operation:
Ι: GPR[31] 63..0 ← zero_extend (PC + 8)
Ι+1: PC ← PC31..28 || instr_index || 02

Exceptions:

None

Programming Notes:

Forming the branch target address by concatenating PC and index bits rather than adding
a signed offset to the PC is an advantage if all program code addresses fit into a 256 MB
region aligned on a 256 MB boundary. It allows a branch to anywhere in the region from
anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the branch instruction is in the last word
of a 256 MB region and can therefore only branch to the following 256 MB region
containing the branch delay slot.

Appendix A CPU Instruction Set Details

A-54

JALR JALRJump and Link Register

SPECIAL
000000

JALR
001001rd0

00000
0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: JALR rs (rd = 31 implied)

JALR rd, rs

Purpose: To procedure call to an instruction address in a register.

Description: rd ← return_addr, PC ← rs

Place the return address link in GPR rd. The return link is the address of the second
instruction following the branch, where execution would continue after a procedure call.

Jump to the effective target address in GPR rs. Execute the instruction following the jump,
in the branch delay slot, before jumping.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is undefined.
This restriction permits an exception handler to resume execution by re-executing the
branch when an exception occurs in the branch delay slot.

The effective target address in GPR rs must be naturally aligned. If either of the two
least-significant bits are not -zero, then an Address Error exception occurs, not for the
jump instruction, but when the branch target is subsequently fetched as an instruction.

Operation:
Ι: temp ← GPR[rs] 31..0

GPR[rd] 63..0 ← zero_extend (PC + 8)
Ι+1: PC ← temp

Exceptions:

None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link;
all other link instructions use GPR 31 The default register for GPR rd, if omitted in the
assembly language instruction, is GPR 31.

Appendix A CPU Instruction Set Details

A-55

JR JRJump Register

SPECIAL
000000

JR
001000rs 0

000 0000 0000 0000

 31 26 25 21 20 6 5 0

 6 5 15 6

MIPS I
Format: JR rs

Purpose: To branch to an instruction address in a register.

Description: PC ← rs

Jump to the effective target address in GPR rs. Execute the instruction following the jump,
in the branch delay slot, before jumping.

Restrictions:

The effective target address in GPR rs must be naturally aligned. If either of the two
least-significant bits are not-zero, then an Address Error exception occurs, not for the
jump instruction, but when the branch target is subsequently fetched as an instruction.

Operation:
Ι: temp ← GPR[rs] 31..0

Ι+1: PC ← temp
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-56

LB LBLoad Byte

LB
100000 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: LB rt, offset (base)

Purpose: To load a byte from memory as a signed value.

Description: rt ← memory [base + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are
fetched, sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.

Restrictions:

None

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR[base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor BigEndian4)
memquad ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr3..0 xor BigEndian4

GPR[rt]63..0 ← sign_extend (memquad (7+8*byte)..8*byte)
Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-57

LBU LBULoad Byte Unsigned

LBU
100100 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: LBU rt, offset (base)

Purpose: To load a byte from memory as an unsigned value.

Description: rt ← memory [base + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are
fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.

Restrictions:

None

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR[base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1).. 4 || (pAddr3..0 xor BigEndian4)
memquad ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr3..0 xor BigEndian4

GPR[rt]63..0 ← zero_extend (memquad(7+8*byte)..8*byte)
Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-58

LD LDLoad Doubleword

LD
110111 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS III
Format: LD rt, offset (base)

Purpose: To load a doubleword from memory.

Description: rt ← memory [base + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned
effective address are fetched and placed in GPR rt. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If any of the three least-significant bits of
the effective address are non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr ←sign_extend (offset) + GPR [base] 31..0

if (vAddr2..0) ≠ 03 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1).. 4 || (pAddr3..0 xor (BigEndian || 03))
byte ← vAddr3..0 || (BigEndian || 03)
memquad ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt]63..0 ← memquad(63+8*byte)..8*byte

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-59

LDL LDLLoad Doubleword Left

LDL
011010 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS III
Format: LDL rt, offset (base)

Purpose: To load the more-significant part of a doubleword from an unaligned memory address.

Description: rt ← rt MERGE memory [base + offset]

Paired LDL and LDR instructions are used to load a register with a doubleword from
eight consecutive bytes in memory starting at an arbitrary byte address. LDL loads the
left (most-significant) bytes and LDR loads the right (least-significant) bytes.

The instruction adds the 16-bit signed offset to the contents of GPR base to form the
effective address. This is the address of the most-significant byte of a doubleword
composed of eight consecutive bytes in memory. LDL loads from one to eight bytes, the
most-significant bytes of the doubleword, into the corresponding bytes of GPR rt. It loads
the bytes that are in the target doubleword that are also in the aligned doubleword which
contains the byte specified by the effective address.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-
order (left-most) byte of the register; then it loads bytes from memory into the register
until it reaches the low-order byte of the doubleword in memory. The least-significant
(right-most) byte (s) of the register will not be changed.

memory
(little-endian)

address 8
address 0

register

before $24AE CD BFGH

LDL $24,11 ($0)

after $24

register

01234567

89101112131415

891011 ACD B

memory
(big-endian)

address 8
address 0

register

before $24A EC DB F G H

LDL $24,3 ($0)

after $24

register

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

6543 HF7 G

The contents of GPR rt are internally bypassed within the processor so that no NOP is
needed between an immediately preceding load instruction which specifies register rt and
a following LDL (or LDR) instruction which also specifies register rt.

Appendix A CPU Instruction Set Details

A-60

No address exceptions due to alignment are possible.

Restrictions:

None

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR[base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor BigEndian4)
if (BigEndian = 0) then
 pAddr ← pAddr(PSIZE-1)..3 || 03

endif
byte ← 0 || (vAddr2..0 xor BigEndian3)
doubleword ← vAddr3 xor BigEndian
memquad ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt]63..0 ← memquad(7+8*byte+64*doubleword)..(64*doubleword) || GPR[rt] (55-8*byte)..0

Given a doubleword in a register and a doubleword in memory, the operation of LDL is as
follows:

Appendix A CPU Instruction Set Details

A-61

LDL

Register

Memory

a b c d e f g h

I J K L M N O P Q R S T U V W X
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

Little-endian

63 0

Little-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination register contents after instruction(shaded is unchanged) Type offset

(63--32 31--0) LEM BEM

0 X b c d e f g h 0 0 15

1 W X c d e f g h 1 0 14

2 V W X d e f g h 2 0 13

3 U V W X e f g h 3 0 12

4 T U V W X f g h 4 0 11

5 S T U V W X g h 5 0 10

6 R S T U V W X h 6 0 9

7 Q R S T U V W X 7 0 8

8 P b c d e f g h 0 8 7

9 O P c d e f g h 1 8 6

10 N O P d e f g h 2 8 5

11 M N O P e f g h 3 8 4

12 L M N O P f g h 4 8 3

13 K L M N O P g h 5 8 2

14 J K L M N O P h 6 8 1

15 I J K L M N O P 7 8 0

Appendix A CPU Instruction Set Details

A-62

LDL

Register

Memory

a b c d e f g h

I J K L M N O P Q R S T U V W X
1514131211109876543210

MSB LSB

Big-endian

63 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Little-endian

Big-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination register contents after instruction(shaded is unchanged) Type offset

(63--32 31--0) LEM BEM

0 I J K L M N O P 7 0 0

1 J K L M N O P h 6 0 1

2 K L M N O P g h 5 0 2

3 L M N O P f g h 4 0 3

4 M N O P e f g h 3 0 4

5 N O P d e f g h 2 0 5

6 O P c d e f g h 1 0 6

7 P b c d e f g h 0 0 7

8 Q R S T U V W X 7 8 8

9 R S T U V W X h 6 8 9

10 S T U V W X g h 5 8 10

11 T U V W X f g h 4 8 11

12 U V W X e f g h 3 8 12

13 V W X d e f g h 2 8 13

14 W X c d e f g h 1 8 14

15 X b c d e f g h 0 8 15

LEM Little-endian memory (BigEndian = 0)
BEM BigEndian = 1
Type AccessLength sent to memory
Offset pAddr3..0 sent to memory

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-63

LDR LDRLoad Doubleword Right

LDR
011011 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS III
Format: LDR rt, offset (base)

Purpose: To load the less-significant part of a doubleword from an unaligned memory address.

Description: rt ← rt MERGE memory [base + offset]

Paired LDL and LDR instructions are used to load a register with a doubleword from
eight consecutive bytes in memory starting at an arbitrary byte address. LDL loads the
left (most-significant) bytes and LDR loads the right (least-significant) bytes.

The instruction adds the 16-bit signed offset to the contents of GPR base to form the
effective address. This is the address of the least-significant bytes of a doubleword
composed of eight consecutive bytes in memory. LDR loads from one to eight bytes, the
least-significant bytes of the doubleword, into the corresponding bytes of GPR rt. It loads
the bytes that are in the target doubleword that are also in the aligned doubleword which
contains the byte specified by the effective address.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-
order (right-most) byte of the register; then it loads bytes from memory into the register
until it reaches the high-order byte of the doubleword in memory. The most significant
(left-most) byte (s) of the register will not be changed.

memory
(little-endian)

address 8
address 0

register

before $24

LDR $24,4 ($0)

after $24

register

01234567

89101112131415

4567

AE CD BFGH

EFGH

memory
(big-endian)

address 8
address 0

register

before $24

LDR $24,4 ($0)

after $24

register

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

4321

A EC DB F G H

0CBA

The contents of GPR rt are internally bypassed within the processor so that no NOP is
needed between an immediately preceding load instruction which specifies register rt and
a following LDR (or LDL) instruction which also specifies register rt.

Appendix A CPU Instruction Set Details

A-64

No address exceptions due to alignment are possible.

Restrictions:

None

Operation: (128-bit bus)
vAddr ← sign_extend(offset) + GPR[base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..0 || (pAddr3..0 xor BigEndian4)
if (BigEndian = 1) then
 pAddr ← pAddr(PSIZE-1)..3 || 03

endif
byte ← 0 || (vAddr2..0 xor BigEndian3)
doubleword ← vAddr3 xor BigEndian
memquad ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt]63..0 ← GPR[rt] 63..(64-8*byte) || memquad(63+64*doubleword).. (64*doubleword+8*byte)

Given a doubleword in a register and a doubleword in memory, the operation of LDR is as
follows:

Appendix A CPU Instruction Set Details

A-65

LDR

Register

Memory

a b c d e f g h

I J K L M N O P Q R S T U V W X
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

Little-endian

63 0

Little-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination register contents after instruction(shaded is unchanged) Type offset

(63--32 31--0) LEM BEM

0 Q R S T U V W X 7 0 0

1 a Q R S T U V W 6 1 0

2 a b Q R S T U V 5 2 0

3 a b c Q R S T U 4 3 0

4 a b c d Q R S T 3 4 0

5 a b c d e Q R S 2 5 0

6 a b c d e f Q R 1 6 0

7 a b c d e f g Q 0 7 0

8 I J K L M N O P 7 8 0

9 a I J K L M N O 6 9 0

10 a b I J K L M N 5 10 0

11 a b c I J K L M 4 11 0

12 a b c d I J K L 3 12 0

13 a b c d e I J K 2 13 0

14 a b c d e f I J 1 14 0

15 a b c d e f g I 0 15 0

Appendix A CPU Instruction Set Details

A-66

LDR

Register

Memory

a b c d e f g h

I J K L M N O P Q R S T U V W X
1514131211109876543210

MSB LSB

Big-endian

63 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Little-endian

Big-endian byte ordering (BigEndianCPU = 1)

vAddr3..0 Destination register contents after instruction(shaded is unchanged) Type offset

(63--32 31--0) LEM BEM

0 a b c d e f g I 0 15 0

1 a b c d e f I J 1 14 0

2 a b c d e I J K 2 13 0

3 a b c d I J K L 3 12 0

4 a b c I J K L M 4 11 0

5 a b I J K L M N 5 10 0

6 a I J K L M N O 6 9 0

7 I J K L M N O P 7 8 0

8 a b c d e f g Q 0 7 0

9 a b c d e f Q R 1 6 0

10 a b c d e Q R S 2 5 0

11 a b c d Q R S T 3 4 0

12 a b c Q R S T U 4 3 0

13 a b Q R S T U V 5 2 0

14 a Q R S T U V W 6 1 0

15 Q R S T U V W X 7 0 0

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessLength sent to memory
Offset pAddr2..0 sent to memory

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-67

LH LHLoad Halfword

LH
100001 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: LH rt, offset (base)

Purpose: To load a halfword from memory as a signed value.

Description: rt ← memory [base + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned
effective address are fetched, sign-extended, and placed in GPR rt. The 16-bit signed offset
is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If the least-significant bit of the address
is non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR[base] 31..0

if (vAddr0) ≠ 0 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor (BigEndian3 || 0))
memquad ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr3..0 xor (BigEndian3 || 0)
GPR[rt]63..0 ← sign_extend (memquad(15+8*byte)..8*byte)

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-68

LHU LHULoad Halfword Unsigned

LHU
100101 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: LHU rt, offset (base)

Purpose: To load a halfword from memory as an unsigned value.

Description: rt ← memory [base + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned
effective address are fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset
is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If the least-significant bit of the address
is non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

if (vAddr0) ≠ 0 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor (BigEndian3 || 0))
memquad ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr3..0 xor (BigEndian3 || 0)
GPR [rt]63..0 ← zero_extend (memquad(15+8*byte)..8*byte)

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-69

LUI LUILoad Upper Immediate

0
00000

LUI
001111 immediatert

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: LUI rt, immediate

Purpose: To load a constant into the upper half of a word.

Description: rt ← immediate || 016

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order
zeros. The 32-bit result is sign-extended and placed into GPR rt.

Restrictions:

None

Operation:
GPR [rt] 63..0 ← sign_extend (immediate || 016)

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-70

LW LWLoad Word

LW
100011 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: LW rt, offset (base)

Purpose: To load a word from memory as a signed value.

Description: rt ← memory [base + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective
address are fetched, sign-extended to the GPR register length if necessary, and placed in
GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective
address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits
of the address are non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

if (vAddr1..0) ≠ 02 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor (BigEndian2 || 02))
memquad ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr3..0 xor (BigEndian2 || 02)
GPR [rt] 63..0 ← sign_extend (memquad(31+8*byte)..8*byte)

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-71

LWL LWLLoad Word Left

LWL
100010 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: LWL rt, offset (base)

Purpose: To load the more-significant part of a word from an unaligned memory address as a
signed value.

Description: rt ← rt MERGE memory [base + offset]

Paired LWL and LWR instructions are used to load a register with a word from four
consecutive bytes in memory starting at an arbitrary byte address. LWL loads the left
(most-significant) bytes and LWR loads the right (least-significant) bytes.

The instruction adds the 16-bit signed offset to the contents of GPR base to form the effective
address. This is the address of the most-significant byte of a word composed of four consecutive
bytes in memory. LWL loads from one to four bytes, the most-significant bytes of the word,
into the corresponding bytes of GPR rt. It loads the bytes that are in the target word that are
also in the aligned word which contains the byte specified by the effective address.

Bit 31 of the register is loaded so the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-
order (left-most) byte of the register; then it loads bytes from memory into the register
until it reaches the low-order byte of the word in memory. The least-significant (right-
most) byte(s) of the register will not be changed.

memory
(little-endian)

address 4
address 0

register

before $24

LWL $24,4 ($0)

after $24

register

0123

4567

4

ACD B

AC B

memory
(big-endian)

address 4
address 0

register

before $24

LWL $24,1 ($0)

after $24

register

0 1 2 3

4 5 6 7

1

dba c

d2 3

Appendix A CPU Instruction Set Details

A-72

The contents of GPR rt are internally bypassed within the processor so that no NOP is
needed between an immediately preceding load instruction which specifies register rt and
a following LWL (or LWR) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Restrictions:

None

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor BigEndian4)
if (BigEndian = 0) then
 pAddr(PSIZE-1)..3 || 03

endif
byte ← 02 || (vAddr1..0 xor BigEndian2)
word ← vAddr3..2 xor BigEndian2

memquad ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp ← memquad(32*word+8*byte+7)..32*word || GPR [rt] (23-8*byte)..0

GPR [rt] 63..0 ← (temp31)32 || temp

Given a doubleword in a register and a doubleword in memory, the operation of LWL is as
follows:

Appendix A CPU Instruction Set Details

A-73

LWL

Register

Memory

a b c d e f g h

I J K L M N O P Q R S T U V W X
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

Little-endian

63 0

Little-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination register contents after instruction(shaded is unchanged) Type offset

(63--32 31--0) LEM BEM

0 Sign bit(31) extended X f g h 0 0 15

1 Sign bit(31) extended W X g h 1 0 14

2 Sign bit(31) extended V W X h 2 0 13

3 Sign bit(31) extended U V W X 3 0 12

4 Sign bit(31) extended T f g h 0 4 11

5 Sign bit(31) extended S T g h 1 4 10

6 Sign bit(31) extended R S T h 2 4 9

7 Sign bit(31) extended Q R S T 3 4 8

8 Sign bit(31) extended P f g h 0 8 7

9 Sign bit(31) extended O P g h 1 8 6

10 Sign bit(31) extended N O P h 2 8 5

11 Sign bit(31) extended M N O P 3 8 4

12 Sign bit(31) extended L f g h 0 12 3

13 Sign bit(31) extended K L g h 1 12 2

14 Sign bit(31) extended J K L h 2 12 1

15 Sign bit(31) extended I J K L 3 12 0

Appendix A CPU Instruction Set Details

A-74

LWL

Register

Memory

a b c d e f g h

I J K L M N O P Q R S T U V W X
1514131211109876543210

MSB LSB

Big-endian

63 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Little-endian

Big-endian byte ordering (BigEndianCPU = 1)

vAddr3..0 Destination register contents after instruction(shaded is unchanged) Type offset

(63--32 31--0) LEM BEM

0 Sign bit(31) extended I J K L 3 12 0

1 Sign bit(31) extended J K L h 2 12 1

2 Sign bit(31) extended K L g h 1 12 2

3 Sign bit(31) extended L f g h 0 12 3

4 Sign bit(31) extended M N O P 3 8 4

5 Sign bit(31) extended N O P h 2 8 5

6 Sign bit(31) extended O P g h 1 8 6

7 Sign bit(31) extended P f g h 0 8 7

8 Sign bit(31) extended Q R S T 3 4 8

9 Sign bit(31) extended R S T h 2 4 9

10 Sign bit(31) extended S T g h 1 4 10

11 Sign bit(31) extended T f g h 0 4 11

12 Sign bit(31) extended U V W X 3 0 12

13 Sign bit(31) extended V W X h 2 0 13

14 Sign bit(31) extended W X g h 1 0 14

15 Sign bit(31) extended X f g h 0 0 15

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessLength sent to memory
Offset pAddr2..0 sent to memory

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned
values, i.e. zeroing bits 63..32 of the destination register when bit 31 is loaded. See SLL or
SLLV for a single-instruction method of propagating the word sign bit in a register into
the upper half of a 64-bit register.

Appendix A CPU Instruction Set Details

A-75

LWR LWRLoad Word Right

LWR
100110 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: LWR rt, offset (base)

Purpose: To load the less-significant part of a word from an unaligned memory address as a signed
value.

Description: rt ← rt MERGE memory [base + offset]

Paired LWL and LWR instructions are used to load a register with a word from four
consecutive bytes in memory starting at an arbitrary byte address. LWL loads the left
(most-significant) bytes and LWR loads the right (least-significant) bytes.

The instruction adds the 16-bit signed offset to the contents of GPR base to form the effective
address. This is the address of the least-significant byte of a word composed of four consecutive
bytes in memory. LWR loads from one to four bytes, the least-significant bytes of the word,
into the corresponding bytes of GPR rt. It loads the bytes that are in the target word that are
also in the aligned word which contains the byte specified by the effective address.

If the word sign bit (bit 31) is loaded from memory into the register by the instruction,
then the loaded word is sign-extended. If the sign bit is not loaded from memory by the
LWR, then bits 63..32 of the destination are unchanged.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-
order (right-most) byte of the register; then it loads bytes from memory into the register
until it reaches the high-order byte of the word in memory. The most significant (left-
most) byte(s) of the register will not be changed.

memory
(little-endian)

address 4
address 0

register

before $24

LWR $24,1 ($0)

after $24

register

0123

4567

123

ACD B

D

Appendix A CPU Instruction Set Details

A-76

memory
(big-endian)

address 4
address 0

register

before $24

LWR $24,4 ($0)

after $24

register

0 1 2 3

4 5 6 7

4CB

A C DB

A

The contents of GPR rt are internally bypassed within the processor so that no NOP is
needed between an immediately preceding load instruction which specifies register rt and
a following LWR (or LWL) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Restrictions:

None

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base]31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1).. 4 || (pAddr3..0 xor BigEndian4)
if (BigEndian = 1) then
 pAddr(PSIZE-31)..3 || 03

endif
byte ← 0 || (vAddr1..0 xor BigEndian2)
word ← vAddr3..2 xor BigEndian2

memquad ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp ← GPR [rt]31.. (32-8*byte) || memquad(31+32*word).. (32*word+8*byte)

if (byte = 4) then
utemp ← (temp31)32 /* loaded bit 31, must sign extend */

else
 one of the following two behaviors:

utemp ← GPR [rt]63..32 /* leave what was there alone */

utemp ← (GPR [rt]31)32 /* sign-extend bit 31 */

endif
GPR [rt] 63..0 ← utemp || temp

Given a word in a register and a word in memory, the operation of LWR is as follows:

Appendix A CPU Instruction Set Details

A-77

LWR

Register

Memory

a b c d e f g h

I J K L M N O P Q R S T U V W X
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

Little-endian

63 0

Little-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination register contents after instruction(shaded is unchanged) Type offset

(63--32 31--0) LEM BEM

0 Sign bit (31) extended e f g I 0 15 0

1 Sign bit (31) extended or unchanged e f I J 1 14 0

2 Sign bit (31) extended or unchanged e I J K 2 13 0

3 Sign bit (31) extended or unchanged I J K L 3 12 0

4 Sign bit (31) extended e f g M 0 11 4

5 Sign bit (31) extended or unchanged e f M N 1 10 4

6 Sign bit (31) extended or unchanged e M N O 2 9 4

7 Sign bit (31) extended or unchanged M N O P 3 8 4

8 Sign bit (31) extended e f g Q 0 7 8

9 Sign bit (31) extended or unchanged e f Q R 1 6 8

10 Sign bit (31) extended or unchanged e Q R S 2 5 8

11 Sign bit (31) extended or unchanged Q R S T 3 4 8

12 Sign bit (31) extended e f g U 0 3 12

13 Sign bit (31) extended or unchanged e f U V 1 2 12

14 Sign bit (31) extended or unchanged e U V W 2 1 12

15 Sign bit (31) extended or unchanged U V W X 3 0 12

Appendix A CPU Instruction Set Details

A-78

LWR

Register

Memory

a b c d e f g h

I J K L M N O P Q R S T U V W X
1514131211109876543210

MSB LSB

Big-endian

63 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Little-endian

Big-endian byte ordering (BigEndianCPU = 1)

vAddr3..0 Destination register contents after instruction(shaded is unchanged) Type offset

(63--32 31--0) LEM BEM

0 Sign bit (31) extended or unchanged e f g I 0 15 0

1 Sign bit (31) extended or unchanged e f I J 1 14 0

2 Sign bit (31) extended or unchanged e I J K 2 13 0

3 Sign bit (31) extended I J K L 3 12 0

4 Sign bit (31) extended or unchanged e f g M 0 11 4

5 Sign bit (31) extended or unchanged e f M N 1 10 4

6 Sign bit (31) extended or unchanged e M N O 2 9 4

7 Sign bit (31) extended M N O P 3 8 4

8 Sign bit (31) extended or unchanged e f g Q 0 7 8

9 Sign bit (31) extended or unchanged e f Q R 1 6 8

10 Sign bit (31) extended or unchanged e Q R S 2 5 8

11 Sign bit (31) extended Q R S T 3 4 8

12 Sign bit (31) extended or unchanged e f g U 0 3 12

13 Sign bit (31) extended or unchanged e f U V 1 2 12

14 Sign bit (31) extended or unchanged e U V W 2 1 12

15 Sign bit (31) extended U V W X 3 0 12

LEM Little-endian memory (BigEndian = 0)
BEM BigEndianMem = 1
Type AccessLength sent to memory
Offset pAddr2..0 sent to memory

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned
values, i.e. zeroing bits 63..32 of the destination register when bit 31 is loaded. See SLL or
SLLV for a single-instruction method of propagating the word sign bit in a register into
the upper half of a 64-bit register.

Appendix A CPU Instruction Set Details

A-79

LWU LWULoad Word Unsigned

LWU
100111 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS III
Format: LWU rt, offset (base)

Purpose: To load a word from memory as an unsigned value.

Description: rt ← memory [base + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective
address are fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added
to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits
of the address are non-zero, an Address Error Exception occurs.

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

if (vAddr1..0) ≠ 02 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1).. 4 || (pAddr3..0 xor (BigEndian2 || 02))
memquad ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr3..0 xor (BigEndian2 || 02)
GPR [rt] 63..0 ← 032 || memquad(31+8*byte)..8*byte

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-80

MFHI MFHIMove from HI Register

SPECIAL
000000

MFHI
010000rd0

00 0000 0000
0

00000

 31 26 25 16 15 11 10 6 5 0

 6 10 5 5 6

MIPS I
Format: MFHI rd

Purpose: To copy the special purpose HI register to a GPR.

Description: rd ← HI

The contents of special register HI are loaded into GPR rd.

Restrictions:

None

Operation:
GPR [rd]63..0 ← HI63..0

Exceptions:

None

Programming Notes:

No restriction is needed because C790 has an interlock mechanism for MULT or DIV
instructions.

Appendix A CPU Instruction Set Details

A-81

MFLO MFLOMove from LO Register

SPECIAL
000000

MFLO
010010rd0

00 0000 0000
0

00000

 31 26 25 16 15 11 10 6 5 0

 6 10 5 5 6

MIPS I
Format: MFLO rd

Purpose: To copy the special purpose LO register to a GPR.

Description: rd ← LO

The contents of special register LO are loaded into GPR rd.

Restrictions:

None

Operation:
GPR [rd] 63..0 ← LO63..0

Exceptions:

None

Programming Notes:

(Same as MFHI)

Appendix A CPU Instruction Set Details

A-82

MOVN MOVNMove Conditional on Not Zero

SPECIAL
000000

MOVN
001011rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS IV
Format: MOVN rd, rs, rt

Purpose: To conditionally move a GPR after testing a GPR value.

Description: if (rt ≠ 0) then rd ← rs

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into
GPR rd.

Restrictions:

None

Operation:
if GPR [rt] 63..0 ≠ 0 then

GPR [rd] 63..0 ← GPR [rs] 63..0

endif
Exceptions:

None

Programming Notes:

The nonzero value tested here is the “condition true” result from the SLT, SLTI, SLTU,
and SLTIU comparison instructions.

Appendix A CPU Instruction Set Details

A-83

MOVZ MOVZMove Conditional on Zero

SPECIAL
000000

MOVZ
001010rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS IV
Format: MOVZ rd, rs, rt

Purpose: To conditionally move a GPR after testing a GPR value.

Description: if (rt = 0) then rd ← rs

If the value in GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:
if GPR [rt] 63..0 = 0 then

GPR [rd] 63..0 ← GPR [rs] 63..0

endif
Exceptions:

None

Programming Notes:

The zero value tested here is the “condition false” result from the SLT, SLTI, SLTU, and
SLTIU comparison instructions.

Appendix A CPU Instruction Set Details

A-84

MTHI MTHIMove to HI Register

SPECIAL
000000

MTHI
010001rs 0

000 0000 0000 0000

 31 26 25 21 20 6 5 0

 6 5 15 6

MIPS I
Format: MTHI rs

Purpose: To copy a GPR to the special purpose HI register.

Description: HI ← rs

The contents of GPR rs are loaded into special register HI.

Restrictions:

None

Operation:
HI63..0 ← GPR [rs] 63..0

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-85

MTLO MTLOMove to LO Register

SPECIAL
000000

MTLO
010011rs 0

000 0000 0000 0000

 31 26 25 21 20 6 5 0

 6 5 15 6

MIPS I
Format: MTLO rs

Purpose: To copy a GPR to the special purpose LO register.

Description: LO ← rs

The contents of GPR rs are loaded into special register LO.

Restrictions:

None

Operation:
LO63..0 ← GPR [rs] 63..0

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-86

MULT MULTMultiply Word

SPECIAL
000000

MULT
011000rt 0

00 0000 0000rs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS I
Format: MULT rs, rt

Purpose: To multiply 32-bit signed integers.

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as signed values, to produce a 64-bit result. The low-order 32-bit word of the
result is placed into special register LO, and the high-order 32-bit word is placed into
special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

Operation:
if (NotWordValue (GPR [rs]) or NotWordValue (GPR [rt])) then UndefinedResult() endif
prod ← GPR [rs]31..0 * GPR [rt]31..0

LO63..0 ← (prod 31)32 || prod31..0

HI63..0 ← (prod 63)32 || prod63..32

Exceptions:

None

Programming Notes:

In the C790, the integer multiply operation proceeds asynchronously and allows other
CPU instructions to execute before it is retired. An attempt to read LO or HI before the
results are written will wait (interlock) until the results are ready. Asynchronous
execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Appendix A CPU Instruction Set Details

A-87

MULTU MULTUMultiply Unsigned Word

SPECIAL
000000

MULTU
011001rt 0

00 0000 0000rs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS I
Format: MULTU rs, rt

Purpose: To multiply 32-bit unsigned integers.

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as unsigned values, to produce a 64-bit result. The low-order 32-bit word of the
result is placed into special register LO, and the high-order 32-bit word is placed into
special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

Operation:
if (NotWordValue (GPR [rs]) or NotWordValue (GPR [rt])) then UndefinedResult() endif
prod ← (0 || GPR [rs]31..0) * (0 || GPR [rt]31..0)
LO63..0 ← (prod 31)32 || prod31..0

HI63..0 ← (prod 63)32 || prod63..32

Exceptions:

None

Programming Notes:

See the Programming Notes for the MULT instruction.

Appendix A CPU Instruction Set Details

A-88

NOR NORNot Or

SPECIAL
000000

NOR
100111rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: NOR rd, rs, rt

Purpose: To do a bitwise logical NOT OR.

Description: rd ← rs NOR rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR
operation. The result is placed into GPR rd.

Restrictions:

None

Operation:
GPR [rd] 63..0 ← GPR [rs] 63..0 nor GPR [rt] 63..0

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-89

OR OROr

SPECIAL
000000

OR
100101rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: OR rd, rs, rt

Purpose: To do a bitwise logical OR.

Description: rd ← rs OR rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR
operation. The result is placed into GPR rd.

Restrictions:

None

Operation:
GPR [rd] 63..0 ← GPR [rs] 63..0 or GPR [rt] 63..0

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-90

ORI ORIOr Immediate

ORI
001101 immediatertrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: ORI rt, rs, immediate

Purpose: To do a bitwise logical OR with a constant.

Description: rt ← rs OR immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR
rs in a bitwise logical OR operation. The result is placed into GPR rt.

Restrictions:

None

Operation:
GPR [rt] 63..0 ← zero_extend (immediate) or GPR [rs] 63..0

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-91

PREF PREFPrefetch

PREF
110011 offsethintbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS IV
Format: PREF hint, offset (base)

Purpose: To prefetch data from memory.

Description: prefetch_memory (base+offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte
address. It advises that data at the effective address may be used in the near future.

If the hint field is 000002, this instruction prefetches a block of data from main memory
into cache.

PREF is an advisory instruction. It may change the performance of the program. For all
hint values and all effective addresses, it neither changes architecturally-visible state nor
alters the meaning of the program.

PREF does not cause addressing-related exceptions. If it raises an exception condition, the
exception conditions ignored. If an addressing-related exception condition is raised and
ignored, no data will be prefetched, Even if no data is prefetched in such a case, some
action that is not architecturally-visible, such as writeback of a dirty cache line, might
take place.

PREF will never generate a memory operation for a location with an uncached memory
access type.

The defined hint values are shown in the table below. The C790 only supports hint = 0.
The hint table may be extended in future implementations.

Values of hint field for prefetch instruction

Value Name Data use and desired prefetch action

0 load Data is expected to be loaded (not modified).

Fetch data as if for a load.

1-31 (Reserved) (Reserved)

Appendix A CPU Instruction Set Details

A-92

Restrictions:

None

Operation:
vAddr ← sign_extend (offset) + GPR [base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
Prefetch (uncached, pAddr, vAddr, DATA, hint)

Exceptions:

None

Programming Notes:

Prefetch can not prefetch data from a mapped location unless the translation for that
location is present in the TLB. Locations in memory pages that have not been accessed
recently may not have translations in the TLB, so prefetch may not be effective for such
locations.

Prefetch on C790 may not prefetch data when there is outstanding bus read process due to
a data cache miss, an uncached load or a miss on the uncached accelerated buffer.

Prefetch does not cause addressing exceptions. It will not cause an exception to prefetch
using an address pointer value before the validity of a pointer determined.

Implementation Notes:

A reserved hint field value causes a default prefetch action, the load hint.

Appendix A CPU Instruction Set Details

A-93

SB SBStore Byte

SB
101000 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: SB rt, offset (base)

Purpose: To store a byte to memory.

Description: memory [base + offset] ← rt

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by
the effective address. The 16-bit signed offset is added to the contents of GPR base to form
the effective address.

Restrictions:

None

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1).. 4 || (pAddr3..0 xor BigEndian4)
byte ← vAddr3..0 xor BigEndian4

dataquad ← GPR [rt] (127-8*byte)..0 || 08*byte

StoreMemory (uncached, BYTE, dataquad, pAddr, vAddr, DATA)
Exceptions:

TLB Refill
TLB Invalid
TLB Modified
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-94

SD SDStore Doubleword

SD
111111 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS III
Format: SD rt, offset (base)

Purpose: To store a doubleword to memory.

Description: memory [base + offset] ← rt

The 64-bit doubleword in GPR rt is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to
form the effective address.

Restrictions:

The effective address must be naturally aligned. If any of the three least-significant bits of
the effective address are non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

if (vAddr2..0) ≠ 03 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1).. 4 || (pAddr3..0 xor (BigEndian || 03))
byte ← vAddr3..0 || (BigEndian || 03)
dataquad ← GPR [rt] (127-8*byte)..0 || 08*byte

StoreMemory (uncached, DOUBLEWORD, dataquad, pAddr, vAddr, DATA)
Exceptions:

TLB Refill
TLB Invalid
TLB Modified
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-95

SDL SDLStore Doubleword Left

SDL
101100 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS III
Format: SDL rt, offset (base)

Purpose: To store the more-significant part of a doubleword to an unaligned memory
address.

Description: memory [base + offset] ← rt

Paired SDL and SDR instructions are used to store a doubleword from a register into
eight consecutive bytes in memory starting at an arbitrary byte address. SDL stores the
left (most-significant) bytes and SDR stores the right (least-significant) bytes.

The 16-bit signed offset is added to the contents of GPR base to form the effective address
of the most-significant byte of the contiguous doubleword in memory. It alters only the
doubleword in memory which contains that byte. From one to eight bytes will be stored,
depending on the starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the
specified byte in memory; then it copies bytes from register to memory until it reaches the
low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(little-endian)

address 8
address 0

register

before $24

SDL $24,10 ($0)

after

01234567

89101112131415

address 8
address 0 01234567

1112131415

AE CD BFGH

FGH

Appendix A CPU Instruction Set Details

A-96

memory
(little-endian)

address 8
address 0

register

before $24

SDL $24,1 ($0)

after

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

address 8
address 0 GFEDCBA0

A EC DB F G H

8 9 10 11 12 13 14 15

Restrictions:

None

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor BigEndian4)
If (BigEndian = 0) then
 pAddr ← pAddr(PSIZE-1)..3 || 03

endif
byte ← 0 || (vAddr2..0 xor BigEndian3)
if (vAddr3 xor BigEndian = 0) then
 dataquad ← 064 || 0(56-8*byte) || GPR [rt] 63.. (56-8*byte)

else
 dataquad ← 0(56-8*byte) || GPR [rt]63.. (56-8*byte) || 064

endif
StoreMemory (uncached, byte, dataquad, pAddr, vAddr, DATA)

Given a doubleword in a register and a doubleword in memory, the operation of SDL is as
follows:

Appendix A CPU Instruction Set Details

A-97

SDL

Register

Memory

A B C D E F G H

i j k l m n o p q r s t u v w x
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

Little-endian

63 0

Little-endian byte ordering (BigEndianCPU = 1)

vAddr3..0 Destination memory contents after instruction(shaded is unchanged) Type offset

(127---------------------------------------64 63--0) LEM BEM

0 I j k l m n o p q r s t u v w A 0 8 15

1 I j k l m n o p q r s t u v A B 1 8 14

2 I j k l m n o p q r s t u A B C 2 8 13

3 I j k l m n o p q r s t A B C D 3 8 12

4 I j k l m n o p q r s A B C D E 4 8 11

5 I j k l m n o p q r A B C D E F 5 8 10

6 I j k l m n o p q A B C D E F G 6 8 9

7 I j k l m n o p A B C D E F G H 7 8 8

8 I j k l m n o A q r s t u v w x 8 0 7

9 I j k l m n A B q r s t u v w x 9 0 6

10 I j k l m A B C q r s t u v w x 10 0 5

11 I j k l A B C D q r s t u v w x 11 0 4

12 I j k A B C D E q r s t u v w x 12 0 3

13 I j A B C D E F q r s t u v w x 13 0 2

14 I A B C D E F G q r s t u v w x 14 0 1

15 A B C D E F G H q r s t u v w x 15 0 0

Appendix A CPU Instruction Set Details

A-98

SDL

Register

Memory

A B C D E F G H

i j k l m n o p q r s t u v w x
1514131211109876543210

MSB LSB

Big-endian

63 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Little-endian

Big-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination memory contents after instruction(shaded is unchanged) Type offset

(127---------------------------------------64 63--0) LEM BEM

0 A B C D E F G H q r s t u v w x 15 0 0

1 i A B C D E F G q r s t u v w x 14 0 1

2 i j A B C D E F q r s t u v w x 13 0 2

3 i j k A B C D E q r s t u v w x 12 0 3

4 i j k l A B C D q r s t u v w x 11 0 4

5 i j k l m A B C q r s t u v w x 10 0 5

6 i j k l m n A B q r s t u v w x 9 0 6

7 i j k l m n o A q r s t u v w x 8 0 7

8 i j k l m n o p A B C D E F G H 7 0 8

9 i j k l m n o p q A B C D E F G 6 0 9

10 i j k l m n o p q r A B C D E F 5 0 10

11 i j k l m n o p q r s A B C D E 4 0 11

12 i j k l m n o p q r s t A B C D 3 0 12

13 i j k l m n o p q r s t u A B C 2 0 13

14 i j k l m n o p q r s t u v A B 1 0 14

15 i j k l m n o p q r s t u v w A 0 0 15

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessLength sent to memory
Offset pAddr3..0 sent to memory

Exceptions:

TLB Refill
TLB Invalid
TLB Modified
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-99

SDR SDRStore Doubleword Right

SDR
101101 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS III
Format: SDR rt, offset (base)

Purpose: To store the less-significant part of a doubleword to an unaligned memory address.

Description: memory [base + offset] ← rt

Paired SDL and SDR instructions are used to store a doubleword from a register into
eight consecutive bytes in memory starting at an arbitrary byte address. SDL stores the
left (most-significant) bytes and SDR stores the right (least-significant) bytes.

The SDR instruction adds its sign-extended 16-bit offset to the contents of GPR base to
form an effective address which may specify an arbitrary byte. It alters only the
doubleword in memory which contains that byte. From one to eight bytes will be stored,
depending on the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it
to the specified byte in memory; then it copies bytes from register to memory until it
reaches the high-order byte of the word in memory. No address exceptions due to
alignment are possible.

memory
(little-endian)

address 8
address 0

register

before $24

SDR $24,3 ($0)

after

01234567

89101112131415

address 8
address 0 012

1112131415

AE CD BFGH

8910

AE CD B

memory
(big-endian)

address 8
address 0

register

before $24

SDR $24,5 ($0)

after

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

address 8
address 0 76H

A EC DB F G H

11 12 13 14 158 9 10

GC ED F

Restrictions:

None

Appendix A CPU Instruction Set Details

A-100

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor BigEndian4)
If (BigEndian = 0) then
 pAddr ← pAddr(PSIZE-31)..3 || 03

endif
byte ← vAddr2..0 xor BigEndian4

if(vAddr3 xor BigEndian = 0) then
 dataquad ← 064 || GPR [rt] (63-8*byte)..0 || 08*byte

else
 dataquad ← GPR [rt] (63-8*byte)..0 || 08*byte || 064

endif
StoreMemory (uncached, DOUBLEWORD-byte, dataquad, pAddr, vAddr, DATA)

Given a doubleword in a register and a doubleword in memory, the operation of SDR is as
follows:

Appendix A CPU Instruction Set Details

A-101

SDR

Register

Memory

A B C D E F G H

i j k l m n o p q r s t u v w x
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

Little-endian

63 0

Little-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination memory contents after instruction(shaded is unchanged) Type offset

(127---------------------------------------64 63--0) LEM BEM

0 i j k l m n o p A B C D E F G H 7 0 0

1 i j k l m n o p B C D E F G H x 6 1 0

2 i j k l m n o p C D E F G H w x 5 2 0

3 i j k l m n o p D E F G H v w x 4 3 0

4 i j k l m n o p E F G H u v w x 3 4 0

5 i j k l m n o p F G H t u v w x 2 5 0

6 i j k l m n o p G H s t u v w x 1 6 0

7 i j k l m n o p H r s t u v w x 0 7 0

8 A B C D E F G H q r s t u v w x 7 8 0

9 B C D E F G H p q r s t u v w x 6 9 0

10 C D E F G H o p q r s t u v w x 5 10 0

11 D E F G H n o p q r s t u v w x 4 11 0

12 E F G H m n o p q r s t u v w x 3 12 0

13 F G H l m n o p q r s t u v w x 2 13 0

14 G H k l m n o p q r s t u v w x 1 14 0

15 H j k l m n o p q r s t u v w x 0 15 0

Appendix A CPU Instruction Set Details

A-102

SDR

Register

Memory

A B C D E F G H

i j k l m n o p q r s t u v w x
1514131211109876543210

MSB LSB

Big-endian

63 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Little-endian

Big-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination memory contents after instruction(shaded is unchanged) Type offset

(127---------------------------------------64 63--0) LEM BEM

0 H j k l m n o p q r s t u v w x 0 15 0

1 G H k l m n o p q r s t u v w x 1 14 0

2 F G H l m n o p q r s t u v w x 2 13 0

3 E F G H m n o p q r s t u v w x 3 12 0

4 D E F G H n o p q r s t u v w x 4 11 0

5 C D E F G H o p q r s t u v w x 5 10 0

6 B C D E F G H p q r s t u v w x 6 9 0

7 A B C D E F G H q r s t u v w x 7 8 0

8 i j k l m n o p H r s t u v w x 0 7 0

9 i j k l m n o p G H s t u v w x 1 6 0

10 i j k l m n o p F G H t u v w x 2 5 0

11 i j k l m n o p E F G H u v w x 3 4 0

12 i j k l m n o p D E F G H v w x 4 3 0

13 i j k l m n o p C D E F G H w x 5 2 0

14 i j k l m n o p B C D E F G H x 6 1 0

15 i j k l m n o p A B C D E F G H 7 0 0

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessLength sent to memory
Offset pAddr3..0 sent to memory

Exceptions:

TLB Refill
TLB Invalid
TLB Modified
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-103

SH SHStore Halfword

SH
101001 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: SH rt, offset (base)

Purpose: To store a halfword to memory.

Description: memory [base + offset] ← rt

The least-significant 16-bit halfword if register rt is stored in memory at the location
specified by the aligned effective address. The 16-bit signed offset is added to the contents
of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If the least-significant bit of the address
is non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

if (vAddr0) ≠ 0 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor (BigEndian3 || 0))
byte ← vAddr3..0 xor (BigEndian3 || 0)
dataquad ← GPR [rt] (127-8*byte)..0 || 08*byte

StoreMemory (uncached, HALFWORD, dataquad, pAddr, vAddr, DATA)
Exceptions:

TLB Refill
TLB Invalid
TLB Modified
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-104

SLL SLLShift Word Left Logical

SPECIAL
000000

SLL
000000rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SLL rd, rt, sa

Purpose: To left shift a word by a fixed number of bits.

Description: rd ← rt << sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeroes into
the emptied bits; the word result is placed in GPR rd. The bit shift count is specified by sa.
The result word is sign-extended.

Restrictions:

None

Operation:
s ← sa
temp ← GPR [rt](31-s)..0 || 0s

GPR [rd]63..0 ← sign_extend (temp31..0)
Exceptions:

None

Programming Notes:

Unlike nearly all other word operations the input operand does not have to be a properly
sign-extended word value to produce a valid sign-extended 32-bit result. The result word
is always sign extended into a 64-bit destination register; this instruction with a zero shift
amount truncates a 64-bit value to 32 bits and sign extends it and stores it in the
destination register.

Appendix A CPU Instruction Set Details

A-105

SLLV SLLVShift Word Left Logical Variable

SPECIAL
000000

SLLV
000100rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SLLV rd, rt, rs

Purpose: To left shift a word by a variable number of bits.

Description: rd ← rt << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeroes into
the emptied bits; the result word is placed in GPR rd. The bit shift count is specified by
the low-order five bits of GPR rs. The result word is sign-extended.

Restrictions:

None

Operation:
s ← GP [rs]4..0

temp ← GPR [rt](31-s)..0 || 0s

GPR [rd]63..0 ← sign_extend (temp31..0)
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-106

SLT SLTSet on Less Than

SPECIAL
000000

SLT
101010rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SLT rd, rs, rt

Purpose: To record the result of a less-than comparison.

Description: rd ← (rs < rt)

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean
result of the comparison in GPR rd. If GPR rs is less than GPR rt the result is 1 (true),
otherwise 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:
if GPR [rs]63..0 < GPR [rt] 63..0 then

GPR [rd] 63..0 ← 0GPRLEN-1 || 1
else

GPR [rd] 63..0 ← 0GPRLEN

endif
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-107

SLTI SLTISet on Less Than Immediate

SLTI
001010 immediatertrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: SLTI rt, rs, immediate

Purpose: To record the result of a less-than comparison with a constant.

Description: rt ← (rs < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and
record the Boolean result of the comparison in GPR rt. If GPR rs is less than immediate
the result is 1 (true), otherwise 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:
if GPR [rs] 63..0 < sign_extend (immediate) then

GPR [rd] 63..0 ← 0GPRLEN-1 || 1
else

GPR [rd] 63..0 ← 0GPRLEN

endif
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-108

SLTIU SLTIUSet on Less Than Immediate Unsigned

SLTIU
001011 immediatertrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: SLTIU rt, rs, immediate

Purpose: To record the result of an unsigned less-than comparison with a constant.

Description: rt ← (rs < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned
integers and record the Boolean result of the comparison in GPR rt. If GPR rs is less than
immediate the result is 1 (true), otherwise 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction is able
to represent the smallest or largest unsigned numbers. The representable values are at
the minimum [0, 32767] or maximum [max_unsigned-32767, max_unsigned] end of the
unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:
if (0 || GPR [rs] 63..0) < (0 || sign_extend (immediate)) then

GPR [rd] 63..0 ← 0GPRLEN-1 || 1
else

GPR [rd] 63..0 ← 0GPRLEN

endif
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-109

SLTU SLTUSet on Less Than Unsigned

SPECIAL
000000

SLTU
101011rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SLTU rd, rs, rt

Purpose: To record the result of an unsigned less-than comparison.

Description: rd ← (rs < rt)

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean
result of the comparison in GPR rd. If GPR rs is less than GPR rt the result is 1 (true),
otherwise 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:
if (0 || GPR [rs] 63..0) < (0 || GPR [rt] 63..0) then

GPR [rd] 63..0 ← 0GPRLEN-1 || 1
else

GPR [rd] 63..0 ← 0GPRLEN

endif
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-110

SRA SRAShift Word Right Arithmetic

SPECIAL
000000

SRA
000011rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SRA rd, rt sa

Purpose: To arithmetic right shift a word by a fixed number of bits.

Description: rd ← rt >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-
bit (bit 31) in the emptied bits; the word result is placed in GPR rd. The bit shift count is
specified by sa. The result word is sign-extended.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bit 63..31 equal) then the result of
the operation is undefined.

Operation:
if (NotWordValue (GPR [rt] 63..0)) then UndefinedResult () endif
s ← sa
temp ← (GPR [rt]31)s || GPR [rt]31..s

GPR [rd] 63..0 ← sign_extend (temp31..0)
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-111

SRAV SRAVShift Word Right Arithmetic Variable

SPECIAL
000000

SRAV
000111rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SRAV rd, rt, rs

Purpose: To arithmetic right shift a word by a variable number of bits.

Description: rd ← rt >> rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-
bit (bit 31) in the emptied bits; the word result is placed in GPR rd. The bit shift count is
specified by the low-order five bits of GPR rs. The result word is sign-extended.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bit 63..31 equal) then the result of
the operation is undefined.

Operation:
if (NotWordValue (GPR [rt] 63..0)) then UndefinedResult () endif
s ← GPR [rs]4..0

temp ← (GPR [rt]31)s || GPR [rt]31..s

GPR [rd] 63..0 ← sign_extend (temp31..0)
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-112

SRL SRLShift Word Right Logical

SPECIAL
000000

SRL
000010rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SRL rd, rt, sa

Purpose: To logical right shift a word by a fixed number of bits.

Description: rd ← rt >> sa (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into
the emptied bits; the word result is placed in GPR rd. The bit shift count is specified by sa.
The result word is sign-extended.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bit 63..31 equal) then the result of
the operation is undefined.

Operation:
if (NotWordValue (GPR [rt] 63..0)) then UndefinedResult () endif
s ← sa
temp ← 0s || GPR [rt]31..s

GPR [rd] 63..0 ← sign_extend(temp31..0)
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-113

SRLV SRLVShift Word Right Logical Variable

SPECIAL
000000

SRLV
000110rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SRLV rd, rt, rs

Purpose: To logical right shift a word by a variable number of bits.

Descriptions: rd ← rt >> rs (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into
the emptied bits; the word result is placed in GPR rd. The bit shift count is specified by
the low-order five bits of GPR rs. The result word is sign-extended.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal) then the result
of the operation is undefined.

Operation:
if (NotWordValue (GPR[rt] 63..0)) then UndefinedResult () endif
s ← GPR [rs]4..0

temp ← 0s || GPR [rt]31..s

GPR [rd] 63..0 ← sign_extend (temp31..0)
Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-114

SUB SUBSubtract Word

SPECIAL
000000

SUB
100010rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SUB rd, rs, rt

Purpose: To subtract 32-bit integers. If overflow occurs, then trap.

Description: rd ← rs - rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs to produce a
32-bit result. If the subtraction results in 32-bit 2’s complement arithmetic overflow then
the destination register is not modified and an Integer Overflow exception occurs. If it
does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

Operation:
if (NotWordValue (GPR[rs] 63..0) or NotWordValue (GPR[rt] 63..0)) then UndefinedResult () endif
temp ← GPR [rs] 63..0 - GPR [rt] 63..0

if (32_bit_arithmetic_overflow) then
SignalException (IntegerOverflow)

else
GPR [rd] 63..0 ← sign_extend (temp31..0)

endif
Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but, does not trap on overflow.

Appendix A CPU Instruction Set Details

A-115

SUBU SUBUSubtract Unsigned Word

SPECIAL
000000

SUBU
100011rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: SUBU rd, rs, rt

Purpose: To subtract 32-bit integers.

Description: rd ← rs - rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-
bit arithmetic result is placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

Operation:
if (NotWordValue (GPR[rs] 63..0) or NotWordValue (GPR[rt] 63..0)) then UndefinedResult () endif
temp ← GPR [rs] 63..0 - GPR [rt] 63..0

GPR [rd] 63..0 ← sign_extend (temp31..0)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

Appendix A CPU Instruction Set Details

A-116

SW SWStore Word

SW
101011 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: SW rt, offset (base)

Purpose: To store a word to memory.

Description: memory [base + offset] ← rt

The least-significant 32-bit word of register rt is stored in memory at the location specified
by the aligned effective address. The 16-bit signed offset is added to the contents of GPR
base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits
of the address are non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr ← sign_extend (offset) + GPR [base] 31..0

if (vAddr1..0) ≠ 02 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1).. 4 || (pAddr3..0 xor (BigEndian2 || 02))
byte ← vAddr3..0 xor (BigEndian2 || 02)
dataquad ← GPR [rt] (127-8*byte)..0 || 08*byte

StoreMemory (uncached, WORD, dataquad, pAddr, vAddr, DATA)
Exceptions:

TLB Refill
TLB Invalid
TLB Modified
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-117

SWL SWLStore Word Left

SWL
101010 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: SWL rt, offset (base)

Purpose: To store the more-significant part of a word to an unaligned memory address.

Description: memory [base + offset] ← rt

Paired SWL and SWR instructions are used to store a word from a register into four
consecutive bytes in memory starting at an arbitrary byte address. SWL stores the left
(most-significant) bytes and SWR stores the right (least-significant) bytes.

The SWL instruction adds its sign-extended 16-bit offset to the contents of GPR base to
form an effective address which may specify an arbitrary byte. It alters only the word in
memory which contains that byte. From one to four bytes will be stored, depending on the
starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the
specified byte in memory; then it copies bytes from register to memory until it reaches the
low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(little-endian)

address 4

address 0

register

before $24

after

0123

4567

address 4

address 0 0123

7

SWL $24,6 ($0)

ACD B

CD B

memory
(big-endian)

address 4

address 0

register

before $24

after

0 1 2 3

4 5 6 7

address 4

address 0 CBA0

SWL $24,1 ($0)

A C DB

4 5 6 7

Appendix A CPU Instruction Set Details

A-118

Restrictions:

None

Operation:
vAddr ← sign_extend (offset) + GPR [base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor BigEndian4)
If (BigEndian = 0) then

pAddr ← pAddr(PSIZE-1)..2 || 02

endif
byte ← vAddr1..0 xor BigEndian2

if (vAddr3..2 xor BigEndian2) = 002 then
dataquad ← 096 || 0(24-8*byte) || GPR[rt]31.. (24-8*byte)

elseif (vAddr3..2 xor BigEndian2) = 012 then
dataquad ← 064 || 0(24-8*byte) || GPR [rt]31.. (24-8*byte) || 032

elseif (vAddr3..2 xor BigEndian2) = 102 then
dataquad ← 032 || 0(24-8*byte) || GPR [rt]31.. (24-8*byte) || 032

elseif (vAddr3..2 xor BigEndian2) = 112 then
dataquad ← 0(24-8*byte) || GPR [rt]31.. (24-8*byte) || 064

endif
StoreMemory (uncached, byte, dataquad, pAddr, vAddr, DATA)

Given a doubleword in a register and a doubleword in memory, the operation of SWL is as
follows:

Appendix A CPU Instruction Set Details

A-119

SWL

Register

Memory

A B C D E F G H

i j k l m n o p q r s t u v w x
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

Little-endian

63 0

Little-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination memory contents after instruction(shaded is unchanged) Type offset

(127---------------------------------------64 63--0) LEM BEM

0 i j k l m n o p q r s t u v w E 0 0 15

1 i j k l m n o p q r s t u v E F 1 0 14

2 i j k l m n o p q r s t u E F G 2 0 13

3 i j k l m n o p q r s t E F G H 3 0 12

4 i j k l m n o p q r s E u v w x 0 4 11

5 i j k l m n o p q r E F u v w x 1 4 10

6 i j k l m n o p q E F G u v w x 2 4 9

7 i j k l m n o p E F G H u v w x 3 4 8

8 i j k l m n o E q r s t u v w x 0 8 7

9 i j k l m n E F q r s t u v w x 1 8 6

10 i j k l m E F G q r s t u v w x 2 8 5

11 i j k l E F G H q r s t u v w x 3 8 4

12 i j k E m n o p q r s t u v w x 0 12 3

13 i j E F m n o p q r s t u v w x 1 12 2

14 i E F G m n o p q r s t u v w x 2 12 1

15 E F G H m n o p q r s t u v w x 3 12 0

Appendix A CPU Instruction Set Details

A-120

SWL

Register

Memory

A B C D E F G H

i j k l m n o p q r s t u v w x
1514131211109876543210

MSB LSB

Big-endian

63 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Little-endian

Big-endian byte ordering (BigEndianCPU = 1)

vAddr3..0 Destination memory contents after instruction(shaded is unchanged) Type offset

(127---------------------------------------64 63--0) LEM BEM

0 E F G H m n o p q r s t u v w x 3 12 0

1 i E G H m n o p q r s t u v w x 2 12 1

2 i j E F m n o p q r s t u v w x 1 12 2

3 i j k E m n o p q r s t u v w x 0 12 3

4 i j k l E F G H q r s t u v w x 3 8 4

5 i j k l m E F G q r s t u v w x 2 8 5

6 i j k l m n E F q r s t u v w x 1 8 6

7 i j k l m n o E q r s t u v w x 0 8 7

8 i j k l m n o p E F G H u v w x 3 4 8

9 i j k l m n o p q E F G u v w x 2 4 9

10 i j k l m n o p q r E F u v w x 1 4 10

11 i j k l m n o p q r s F u v w x 0 4 11

12 i j k l m n o p q r s t E F G H 3 0 12

13 i j k l m n o p q r s t u E F G 2 0 13

14 i j k l m n o p q r s t u v E F 1 0 14

15 i j k l m n o p q r s t u v w F 0 0 15

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessLength sent to memory
Offset pAddr3..0 sent to memory

Exceptions:

TLB Refill
TLB Invalid
TLB Modified
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-121

SWR SWRStore Word Right

SWR
101110 offsetrtbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: SWR rt, offset (base)

Purpose: To store the less-significant part of a word to an unaligned memory address.

Description: memory [base + offset] ← rt

Paired SWL and SWR instructions are used to store a word from a register into four
consecutive bytes in memory starting at an arbitrary byte address. SWL stores the left
(most-significant) bytes and SWR stores the right (least-significant) bytes.

The SWR instruction adds its sign-extended 16-bit offset to the contents of GPR base to
form an effective address which may specify an arbitrary byte. It alters only the word in
memory which contains that byte. From one to four bytes will be stored, depending on the
starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it
to the specified byte in memory; then copies bytes from register to memory until it reaches
the high-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(little-endian)

address 4

address 0

register

before $24

after

0123

4567

address 4

address 0 012

7

SWR $24,3 ($0)

ACD B

456

A

memory
(big-endian)

address 4

address 0

register

before $24

after

0 1 2 3

4 5 6 7

address 4

address 0 321

D

SWR $24,4 ($0)

A C DB

765

0

Appendix A CPU Instruction Set Details

A-122

Restrictions:

None

Operation:
vAddr ← sign_extend (offset) + GPR [base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..4 || (pAddr3..0 xor BigEndian4)
If (BigEndian = 0) then

pAddr ← pAddr(PSIZE-1)..2 || 02

endif
byte ← vAddr1..0 xor BigEndian2

if (vAddr3..2 xor BigEndian2) = 002 then
dataquad ← 096 || GPR [rt] (31-8*byte)..0 || 08*byte

else if (vAddr3..2 xor BigEndian2) = 012 then
dataquad ← 064 || GPR [rt] (31-8*byte)..0 || 08*byte || 032

else if (vAddr3..2 xor BigEndian2) = 102 then
dataquad ← 032 || GPR [rt] (31-8*byte)..0 || 08*byte || 064

else if (vAddr3..2 xor BigEndian2) = 112 then
dataquad ←GPR [rt] (31-8*byte)..0 || 08*byte || 096

endif
StoreMemory (uncached, WORD-byte, dataquad, pAddr, vAddr, DATA)

Given a doubleword in a register and a doubleword in memory, the operation of SWR is as
follows:

Appendix A CPU Instruction Set Details

A-123

SWR

Register

Memory

A B C D E F G H

i j k l m n o p q r s t u v w x
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

Little-endian

63 0

Little-endian byte ordering (BigEndianCPU = 0)

vAddr3..0 Destination memory contents after instruction(shaded is unchanged) Type offset

(127---------------------------------------64 63--0) LEM BEM

0 i j k l m n o p q r s t E F G H 3 0 12

1 i j k l m n o p q r s t F G H x 2 1 12

2 i j k l m n o p q r s t G H w x 1 2 12

3 i j k l m n o p q r s t H v w x 0 3 12

4 i j k l m n o p E F G H u v w x 3 4 8

5 i j k l m n o p F G H t u v w x 2 5 8

6 i j k l m n o p G H s t u v w x 1 6 8

7 i j k l m n o p H r s t u v w x 0 7 8

8 i j k l E F G H q r s t u v w x 3 8 4

9 i j k l F G H p q r s t u v w x 2 9 4

10 i j k l G H o p q r s t u v w x 1 10 4

11 i j k l H n o p q r s t u v w x 0 11 4

12 E F G H m n o p q r s t u v w x 3 12 0

13 F G H l m n o p q r s t u v w x 2 13 0

14 G H k l m n o p q r s t u v w x 1 14 0

15 H j k l m n o p q r s t u v w x 0 15 0

Appendix A CPU Instruction Set Details

A-124

SWR

Register

Memory

A B C D E F G H

i j k l m n o p q r s t u v w x
1514131211109876543210

MSB LSB

Big-endian

63 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Little-endian

Big-endian byte ordering (BigEndianCPU = 1)

vAddr3..0 Destination memory contents after instruction(shaded is unchanged) Type offset

(127---------------------------------------64 63--0) LEM BEM

0 H j k l m n o p q r s t u v w x 0 15 0

1 G H k l m n o p q r s t u v w x 1 14 0

2 F G H l m n o p q r s t u v w x 2 13 0

3 E F G H m n o p q r s t u v w x 3 12 0

4 i j k l H n o p q r s t u v w x 0 11 4

5 i j k l G H o p q r s t u v w x 1 10 4

6 i j k l F G H p q r s t u v w x 2 9 4

7 i j k l E F G H q r s t u v w x 3 8 4

8 i j k l m n o p H r s t u v w x 0 7 8

9 i j k l m n o p G H s t u v w x 1 6 8

10 i j k l m n o p F G H t u v w x 2 5 8

11 i j k l m n o p E F G H u v w x 3 4 8

12 i j k l m n o p q r s t H v w x 0 3 12

13 i j k l m n o p q r s t G H w x 1 2 12

14 i j k l m n o p q r s t F G H x 2 1 12

15 i j k l m n o p q r s t E F G H 3 0 12

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessLength sent to memory
Offset pAddr3..0 sent to memory

Exceptions:

TLB Refill
TLB Invalid
TLB Modified
Address Error

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-125

SYNC.stype SYNC.stypeSynchronize Shared Memory

SPECIAL
000000

SYNC
001111stype0

000 0000 0000 0000

 31 26 25 11 10 6 5 0

 6 15 5 6

MIPS II
Format: SYNC (stype = 0xxxx)

SYNC.L (stype = 0xxxx)

SYNC.P (stype = 1xxxx)

Purpose: To perform either a memory barrier operation or a pipeline barrier operation.

Description:

This instruction either interlocks the pipeline until all pending loads and stores are
completed or all earlier issued instructions are completed.

In case of the SYNC or the SYNC.L instructions (memory barrier) all pending loads and
stores are retired. Loads are retired when the destination register is written. Stores are
retired when the stored data (in store buffers or write buffers) is either stored in the data
cache, or sent on the processor bus and SYSDACK* has been asserted. All uncached
accelerated data gathering operation is terminated. The uncached accelerated buffer is
invalidated. All bus read processes due to load/store/pref/cache instructions are completed.
All pending bus write processes in the write back buffer are completed.

In case of the SYNC.P instruction (pipeline barrier) all instructions prior to the barrier are
completed before the instructions following the barrier operation are fetched. Note that
the barrier operation does not wait for any instruction which was issued prior to the
barrier operation but not retired (e.g., multiply, divide, multicycle COP1 operations or a
pending load which were issued prior to the barrier operation).

Operation:
SyncOperation (stype)

Exceptions:

None

Programming Notes:

The SYNC instruction (SYNC.P or SYNC.L) is not allowed in the branch delay slot of
instructions which have branch delay slots.

Appendix A CPU Instruction Set Details

A-126

SYSCALL SYSCALLSystem Call

SPECIAL
000000

SYSCALL
001100code

 31 26 25 6 5 0

 6 20 6

MIPS I
Format: SYSCALL

Purpose: To cause a System Call exception.

Description:

A system call exception occurs, immediately and unconditionally transferring control to
the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Restrictions:

None

Operation:
SignalException (SystemCall)

Exceptions:

System Call

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-127

TEQ TEQTrap if Equal

SPECIAL
000000

TEQ
110100codertrs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS II
Format: TEQ rs, rt

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs = rt) then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is equal to GPR
rt then take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode
information for system software. To retrieve the information, system software must load
the instruction word from memory.

Restrictions:

None

Operation:
if GPR[rs]63..0 = GPR[rt] 63..0 then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-128

TEQI TEQITrap if Equal Immediate

TEQI
01100

REGIMM
000001 immediaters

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: TEQI rs, immediate

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs = immediate) then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integer; if
GPR rs is equal to immediate then taken a Trap exception.

Restrictions:

None

Operation:
if GPR [rs] 63..0 = sign_extend (immediate) then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-129

TGE TGETrap if Greater or Equal

SPECIAL
000000

TGE
110000codertrs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS II
Format: TGE rs, rt

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs ≥ rt) then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is greater than
or equal to GPR rt then take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode
information for system software. To retrieve the information, system software must load
the instruction word from memory.

Restrictions:

None

Operation:
if GPR [rs] 63..0 ≥ GPR [rt] 63..0 then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-130

TGEI TGEITrap if Greater or Equal Immediate

TGEI
01000

REGIMM
000001 immediaters

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: TGEI rs, immediate

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs ≥ immediate) then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if
GPR rs is greater than or equal to immediate then take a Trap exception.

Restrictions:

None

Operation:
if GPR [rs] 63..0 ≥ sign_extend (immediate) then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-131

TGEIU TGEIUTrap if Greater or Equal Immediate Unsigned

TGEIU
01001

REGIMM
000001 immediaters

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: TGEIU rs, immediate

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs ≥ immediate) then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned
integers; if GPR rs is greater than or equal to immediate then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction is able
to represent the smallest or largest unsigned numbers. The representable values are at
the minimum [0,32767] or maximum [max_unsigned-32767, max_unsigned] end of the
unsigned range.

Restrictions:

None

Operation:
if (0 || GPR[rs] 63..0) ≥ (0 || sign_extend (immediate)) then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-132

TGEU TGEUTrap if Greater or Equal Unsigned

SPECIAL
000000

TGEU
110001codertrs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS II
Format: TGEU rs, rt

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs ≥ rt) then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is greater
than or equal to GPR rt then take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode
information for system software. To retrieve the information, system software must load
the instruction word from memory.

Restrictions:

None

Operation:
if (0 || GPR[rs] 63..0)) ≥ (0 || GPR[rt] 63..0) then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-133

TLT TLTTrap if Less Than

SPECIAL
000000

TLT
110010codertrs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS II
Format: TLT rs, rt

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs < rt) then Trap

Compare the contents of GPR rs and GPR rs as signed integers; if GPR rs is less than
GPR rt then take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode
information for system software. To retrieve the information, system software must load
the instruction word from memory.

Restrictions:

None

Operation:
if GPR [rs] 63..0 < GPR [rt] 63..0 then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-134

TLTI TLTITrap if Less Than Immediate

TLTI
01010

REGIMM
000001 immediaters

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: TLTI rs, immediate

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs < immediate) then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if
GPR rs is less than immediate then take a Trap exception.

Restrictions:

None

Operation:
if GPR[rs] 63..0 < sign_extend (immediate) then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-135

TLTIU TLTIUTrap if Less Than Immediate Unsigned

TLTIU
01011

REGIMM
000001 immediaters

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: TLTIU rs, immediate

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs < immediate) then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned
integers; if GPR rs is less than immediate then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction is able
to represent the smallest or largest unsigned numbers. The representable values are at
the minimum [0, 32767] or maximum [max_unsigned-32767, max_unsigned] end of the
unsigned range.

Restrictions:

None

Operation:
if (0 || GPR[rs] 63..0) < (0 || sign_extend (immediate)) then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-136

TLTU TLTUTrap if Less Than Unsigned

SPECIAL
000000

TLTU
110011codertrs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS II
Format: TLTU rs, rt

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs < rt) then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than
GPR rt then take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode
information for system software. To retrieve the information, system software must load
the instruction word from memory.

Restrictions:

None

Operation:
if (0 || GPR[rs] 63..0) < (0 || GPR[rt] 63..0) then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-137

TNE TNETrap if Not Equal

SPECIAL
000000

TNE
110110codertrs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

MIPS II
Format: TNE rs, rt

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs ≠ rt) then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is not equal to
GPR rt then take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode
information for system software. To retrieve the information, system software must load
the instruction word from memory.

Restrictions:

None

Operation:
if GPR[rs] 63..0 ≠ GPR[rt] 63..0 then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-138

TNEI TNEITrap if Not Equal Immediate

TNEI
01110

REGIMM
000001 immediaters

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS II
Format: TNEI rs, immediate

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs ≠ immediate) then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if
GPR rs is not equal to immediate then take a Trap exception.

Restriction:

None

Operation:
if GPR[rs] 63..0 ≠ sign_extend (immediate) then

SignalException (Trap)
endif

Exceptions:

Trap

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-139

XOR XORExclusive OR

SPECIAL
000000

XOR
100110rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

MIPS I
Format: XOR rd, rs, rt

Purpose: To do a bitwise logical EXCLUSIVE OR.

Description: rd ← rs XOR rt

Combine the contents of GPR rs and GPR rt in a bitwise logical exclusive OR operation
and place the result into GPR rd.

Restrictions:

None

Operation:
GPR[rd] 63..0 ← GPR[rs] 63..0 xor GPR[rt] 63..0

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-140

XORI XORIExclusive OR Immediate

XORI
001110 immediatertrs

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: XORI rt, rs, immediate

Purpose: To do a bitwise logical EXCLUSIVE OR with a constant.

Description: rt ← rs XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise
logical exclusive OR operation and place the result into GPR rt.

Restrictions:

None

Operation:
GPR[rt] 63..0 ← GPR[rs] 63..0 xor zero_extend (immediate)

Exceptions:

None

Programming Notes:

None

Appendix A CPU Instruction Set Details

A-141

A.5 CPU Instruction Encoding
The following table shows the OpCode encoding of CPU instructions for the MIPS IV
architecture. This architecture level includes all MIPS I, MIPS II, MIPS III and some
MIPS IV instructions. Even though the OpCodes for MTSAB, MTSAH, MFSA, MTSA, LQ,
and SQ are shown in this OpCode table, these instructions are described in Appendix B
since they are C790-specific instructions.

Coprocessor 0 (COP0 - System Control Processor), Coprocessor 1 (COP1 - Floating-point
Processor) and C790 specific instructions are described in separate sections.

31 26 0

OpCode

OpCode bits 28..26 Instructions encoded by OpCode field

bits 0 1 2 3 4 5 6 7
31..29 000 001 010 011 100 101 110 111

0 000 SPECIAL δ REGIMM δ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 α, λ COP1 α, π ∗ ∗ BEQL BNEL BLEZL BGTZL

3 011 DADDI DADDIU LDL LDR MMI δ, µ ∗ LQ µ SQ µ

4 100 LB LH LWL LW LBU LHU LWR LWU

5 101 SB SH SWL SW SDL SDR SWR CACHE

6 110 η LWC1 η PREF η LDC1 η LD

7 111 η SWC1 η ∗ η SDC1 η SD

31 26 5 0
OpCode =
SPECIAL function

function bits 2..0 Instructions encoded by function field when OpCode field = SPECIAL

bits 0 1 2 3 4 5 6 7
5..3 000 001 010 011 100 101 110 111

0 000 SLL ∗ SRL SRA SLLV ∗ SRLV SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK ∗ SYNC

2 010 MFHI MTHI MFLO MTLO DSLLV ∗ DSRLV DSRAV

3 011 MULT MULTU DIV DIVU η η η η

4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 MFSA µ MTSA µ SLT SLTU DADD DADDU DSUB DSUBU

6 110 TGE TGEU TLT TLTU TEQ ∗ TNE ∗

7 111 DSLL ∗ DSRL DSRA DSLL32 ∗ DSRL32 DSRA32

Appendix A CPU Instruction Set Details

A-142

31 26 20 16 0
OpCode =
REGIMM rt

rt bits 18..16 Instructions encoded by rt field when OpCode field = REGIMM

bits 0 1 2 3 4 5 6 7
20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL BGEZL ∗ ∗ ∗ ∗

0 01 TGEI TGEIU TLTI TLTIU TEQI ∗ TNEI ∗

2 10 BLTZAL BGEZAL BLTZALL BGEZALL ∗ ∗ ∗ ∗

3 11 MTSAB µ MTSAH µ ∗ ∗ ∗ ∗ ∗ ∗

* This OpCode is reserved for future use. An attempt to execute it causes a
Reserved Instruction exception.

η This OpCode is reserved for one of the following instructions which are
currently not supported: DMULT, DMULTU, DDIV, DDIVU, LL, LLD, SC,
SCD, LWC2, SWC2. An attempt to execute it causes a Reserved Instruction
exception.

δ This OpCode indicates an instruction class. The instruction word must be
further decoded by examining additional tables that show the values for
another instruction field.

µ This OpCode indicates C790 specific instructions. It is included in the table
because it uses a primary OpCode in the instruction encoding map.

α This OpCode is a coprocessor operation, not a CPU operation. If the
processor state does not allow access to the specified coprocessor, the
instruction causes a Coprocessor Unusable exception. It is included in the
table because it uses a primary OpCode in the instruction encoding map.

λ This OpCode indicates the class of Coprocessor 0 (System Control Processor)
instructions. If the processor state does not allow access to the coprocessor 0,
the instruction causes a Coprocessor Unusable exception. Further encoding
information for this instruction class is in the COP0 Instruction Encoding
tables.

π This OpCode indicates the class of Coprocessor 1 (Floating-Point Processor)
instructions. If the processor state does not allow access to the coprocessor 1,
the instruction causes a Coprocessor Unusable exception. Further encoding
information for this instruction class is in the COP1 Instruction Encoding
tables.

Appendix B C790-Specific Instruction Set Details

B-1

B. C790-Specific Instruction Set Details

This appendix provides a detailed description of the operation of each C790-specific
instruction. The C790’s instruction set is extended from the original MIPS ISA in order to
support embedded applications. There are three classes of C790-specific instructions:

• Three-operand Multiply and Multiply-Add instructions

• Multiply and Multiply-Add instructions for pipeline 1

• Multimedia instructions

Appendix B C790-Specific Instruction Set Details

B-2

B.1 Conventions Used in This Chapter
The HI and LO registers are 128 bits wide. Some instructions operate on either the lower
or the upper doublewords of these registers, and there are also instructions which operate
on the complete registers.

The following terminology is used for these registers.

• Strictly speaking, a reference to the least-significant doubleword of the HI and LO
register should use the names HI0 and LO0. However, to be consistent with
existing MIPS terminology, these registers are just called HI and LO.

• Reference to the upper doublewords of the HI and LO registers is made by using
the names HI1 and LO1.

• Occasionally, based on context, the complete 128-bit registers are referred to as HI
and LO.

• Any portion of these registers can use the names HI and LO with the appropriate
bit width specifications. Thus HI1 can be referred to as HI127..64 and LO1 can be
referred to as LO127..64, etc.

B.1.1 Instruction Description Notation and Functions
The Operation sections of the instruction descriptions describe the operation performed by
each instruction using a high-level language notation, or pseudocode. Symbols, functions,
and structures used in the Operation sections are described here.

B.1.2 Pseudocode Language Statement Execution
Each of the high-level language statements in an operation description is executed in
sequential order (as modified by conditional and loop constructs).

B.1.3 Pseudocode Symbols
Special symbols used in the notation are described in Appendix A.

B.2 Definitions for Pseudocode Functions Used in Operation
Descriptions

A variety of functions are used in the pseudocode descriptions to make the pseudocode
more readable and also to abstract implementation-specific behavior. These functions are
defined in Appendix A.

Appendix B C790-Specific Instruction Set Details

B-3

B.3 Summary of C790-Specific Instructions

B.3.1 Multiply and Multiply-Add Instructions

• Three-Operand Multiply and Multiply-Add (4 instructions)
MADD Multiply/Add
MADDU Multiply/Add Unsigned
MULT Multiply (3-operand)
MULTU Multiply Unsigned (3-operand)

• Multiply Instructions for Pipeline 1 (10 instructions)
MULT1 Multiply Pipeline 1
MULTU1 Multiply Unsigned Pipeline 1
DIV1 Divide Pipeline 1
DIVU1 Divide Unsigned Pipeline 1
MADD1 Multiply-Add Pipeline 1
MADDU1 Multiply-Add Unsigned Pipeline 1
MFHI1 Move From HI1 Register
MFLO1 Move From LO1 Register
MTHI1 Move To HI1 Register
MTLO1 Move To LO1 Register

B.3.2 Multimedia Instructions
• Arithmetic (19 instructions)

PADDB Parallel Add Byte
PSUBB Parallel Subtract Byte
PADDH Parallel Add Halfword
PSUBH Parallel Subtract Halfword
PADDW Parallel Add Word
PSUBW Parallel Subtract Word
PADSBH Parallel Add/Subtract Halfword
PADDSB Parallel Add with Signed Saturation Byte
PSUBSB Parallel Subtract with Signed Saturation Byte
PADDSH Parallel Add with Signed Saturation Halfword
PSUBSH Parallel Subtract with Signed Saturation Halfword
PADDSW Parallel Add with Signed Saturation Word
PSUBSW Parallel Subtract with Signed Saturation Word
PADDUB Parallel Add with Unsigned saturation Byte
PSUBUB Parallel Subtract with Unsigned saturation Byte
PADDUH Parallel Add with Unsigned saturation Halfword
PSUBUH Parallel Subtract with Unsigned saturation Halfword
PADDUW Parallel Add with Unsigned saturation Word
PSUBUW Parallel Subtract with Unsigned saturation Word

Appendix B C790-Specific Instruction Set Details

B-4

• Min/Max (4 instructions)
PMAXH Parallel Maximum Halfword
PMINH Parallel Minimum Halfword
PMAXW Parallel Maximum Word
PMINW Parallel Minimum Word

• Absolute (2 instructions)
PABSH Parallel Absolute Halfword
PABSW Parallel Absolute Word

• Logical (4 instructions)
PAND Parallel AND
POR Parallel OR
PXOR Parallel XOR
PNOR Parallel NOR

• Shift (9 instructions)
PSLLH Parallel Shift Left Logical Halfword
PSRLH Parallel Shift Right Logical Halfword
PSRAH Parallel Shift Right Arithmetic Halfword
PSLLW Parallel Shift Left Logical Word
PSRLW Parallel Shift Right Logical Word
PSRAW Parallel Shift Right Arithmetic Word
PSLLVW Parallel Shift Left Logical Variable Word
PSRLVW Parallel Shift Right Logical Variable Word
PSRAVW Parallel Shift Right Arithmetic Variable Word

• Compare (6 instructions)
PCGTB Parallel Compare for Greater Than Byte
PCEQB Parallel Compare for Equal Byte
PCGTH Parallel Compare for Greater Than Halfword
PCEQH Parallel Compare for Equal Halfword
PCGTW Parallel Compare for Greater Than Word
PCEQW Parallel Compare for Equal Word

• LZC (1 instruction)
PLZCW Parallel Leading Zero or One Count Word

• Quadword Load and Store (2 instructions)
LQ Load Quadword
SQ Store Quadword

Appendix B C790-Specific Instruction Set Details

B-5

• Multiply and Divide (19 instructions)
PMULTW Parallel Multiply Word
PMULTUW Parallel Multiply Unsigned Word
PDIVW Parallel Divide Word
PDIVUW Parallel Divide Unsigned Word
PMADDW Parallel Multiply-Add Word
PMADDUW Parallel Multiply-Add Unsigned Word
PMSUBW Parallel Multiply-Subtract Word
PMULTH Parallel Multiply Halfword
PMADDH Parallel Multiply-Add Halfword
PMSUBH Parallel Multiply-Subtract Halfword
PHMADH Parallel Horizontal Multiply-Add Halfword
PHMSBH Parallel Horizontal Multiply-Subtract Halfword
PDIVBW Parallel Divide Broadcast Word
PMFHI Parallel Move From HI Register
PMFLO Parallel Move From LO Register
PMTHI Parallel Move To HI Register
PMTLO Parallel Move To LO Register
PMFHL Parallel Move From HI/LO Register
PMTHL Parallel Move To HI/LO Register

• Pack/Extend (11 instructions)
PPAC5 Parallel Pack to 5 bits
PPACB Parallel Pack to Byte
PPACH Parallel Pack to Halfword
PPACW Parallel Pack to Word
PEXT5 Parallel Extend Upper from 5 bits
PEXTUB Parallel Extend Upper from Byte
PEXTLB Parallel Extend Lower from Byte
PEXTUH Parallel Extend Upper from Halfword
PEXTLH Parallel Extend Lower from Halfword
PEXTUW Parallel Extend Upper from Word
PEXTLW Parallel Extend Lower from Word

• Others (16 instructions)
PCPYH Parallel Copy Halfword
PCPYLD Parallel Copy Lower Doubleword
PCPYUD Parallel Copy Upper Doubleword
PREVH Parallel Reverse Halfword
PINTH Parallel Interleave Halfword
PINTEH Parallel Interleave Even Halfword
PEXEH Parallel Exchange Even Halfword
PEXCH Parallel Exchange Center Halfword
PEXEW Parallel Exchange Even Word
PEXCW Parallel Exchange Center Word
QFSRV Quadword Funnel Shift Right Variable
MFSA Move from Shift Amount Register
MTSA Move to Shift Amount Register
MTSAB Move Byte Count to Shift Amount Register
MTSAH Move Halfword Count to Shift Amount Register
PROT3W Parallel Rotate 3 Words

Appendix B C790-Specific Instruction Set Details

B-6

B.4 Instruction Set Details
In the following sections, details are provided for each of the C790-specific instructions.

Exceptions that may occur due to the execution of each instruction are listed after the
description of each instruction. Descriptions of the immediate cause and manner of
handling exceptions are omitted from the instruction descriptions in this appendix.

Appendix B C790-Specific Instruction Set Details

B-7

DIV1 DIV1Divide Word Pipeline 1

MMI
011100

DIV1
011010rt 0

0000000000rs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

C790

Format: DIV1 rs, rt

Purpose: To divide 32-bit signed integers using pipeline 1.

Description: (LO1, HI1) ← rs / rt

The 32-bit value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands
as signed values. The 32-bit quotient is placed into special register LO1 (= LO127..64) and
the 32-bit remainder is placed into special register HI1 (= HI127..64).

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation will be undefined.

If the divisor in GPR rt is zero, the arithmetic result value will be undefined.

Operation:
if (NotWordValue(GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif

q ← GPR[rs]31..0 div GPR[rt]31..0

r ← GPR[rs]31..0 mod GPR[rt]31..0

LO127..64 ← (q 31)32 || q 31..0

HI127..64 ← (r 31)32 || r 31..0

Supplementary Explanation:

Normally, when 0x80000000 (-2147483648) the signed minimum value is divided by
0xFFFFFFFF (-1), the operation will result in an overflow. However, in this instruction an
overflow exception doesn’t occur and the result will be as follows:

Quotient is 0x80000000 (-2147483648), and remainder is 0x00000000 (0).

This sign of the quotient and the remainder is based on the signs of the dividend and the
divisor as shown in the table below:

Appendix B C790-Specific Instruction Set Details

B-8

Table B-1. Quotient and Remainder Signs

Dividend Divisor Quotient Remainder

Positive Positive Positive Positive
Positive Negative Negative Positive
Negative Positive Negative Negative
Negative Negative Positive Negative

Exceptions:

None

Programming Notes:

In C790, the integer divide operation proceeds asynchronously and allows other CPU
instructions to execute before it is retired. An attempt to read LO1 or HI1 registers before
the results are written will cause an interlock until the results are ready. Out-of-order
execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

No arithmetic exception occurs under any circumstances. Divide-by-zero or overflow
conditions should be detected by instructions preceding the divide instruction. If the
divide is asynchronous then the zero-divisor check can execute in parallel with the divide.
The action taken on either divide-by-zero or overflow is either a convention within the
program itself or more typically, the system software; one possibility is to take a BREAK
exception with a code field value to signal the problem to the system software.

As an example, the C programming language in a UNIX environment expects division by
zero to either terminate the program or execute a program-specified signal handler. C
does not expect overflow to cause any exceptional condition. If the C compiler uses a divide
instruction, it also emits code to test for a zero divisor and execute a BREAK instruction to
inform the operating system if one is detected.

Appendix B C790-Specific Instruction Set Details

B-9

DIVU1 DIVU1Divide Unsigned Word Pipeline 1

MMI
011100

DIVU1
011011rt 0

0000000000rs

 31 26 25 21 20 16 15 6 5 0

 6 5 5 10 6

C790

Format: DIVU1 rs, rt

Purpose: To divide 32-bit unsigned integers using pipeline 1.

Description: (LO1, HI1) ← rs / rt

The 32-bit value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands
as unsigned values. The 32-bit quotient is placed into special register LO1 (= LO127..64) and
the 32-bit remainder is placed into special register HI1 (= HI127..64).

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain zero-extended 32-bit values (bits 63..32 equal
zero), then the result of the operation is undefined.

If the divisor in GPR rt is zero, the arithmetic result will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif

q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)
r ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)
LO127..64 ← (q 31)32 || q 31..0

HI127..64 ← (r 31)32 || r 31..0

Exceptions:

None

Programming Notes:

See the Programming Notes for the DIV1 instruction.

Appendix B C790-Specific Instruction Set Details

B-10

LQ LQLoad Quadword

LQ
011110 rt offsetbase

 31 26 25 21 20 16 15 0

 6 5 5 16

C790

Format: LQ rt, offset (base)

Purpose: To load a quadword from memory.

Description: rt ← memory [base + offset]

The contents of the 128-bit quadword at the memory location specified by the effective
address are fetched and placed in the 128-bit GPR rt. The 16-bit signed offset is added to
the contents of GPR base register to form the effective address. The least-significant four
bits of the effective address are masked to zero (effectively creating an aligned address)
before being used to access memory. No address exceptions due to alignment are possible.

Restriction:

The effective address doesn’t have to be naturally aligned. The least significant 4 bits of
the effective address are ignored.

Operations:

vAddr ← sign_extend (offset) + GPR [base]31..0

vAddr3..0 = 04

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)

memquad ← LoadMemory (uncached, QUADWORD, pAddr, vAddr, DATA)

GPR[rt]127..0 ← memquad
Exceptions:

TLB Refill
TLB Invalid
Address Error

Appendix B C790-Specific Instruction Set Details

B-11

MADD MADDMultiply-Add word

MMI
011100

MADD
000000rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: MADD rs, rt

MADD rd, rs, rt

Purpose: To multiply 32-bit signed integers and add.

Description: (rd, HI, LO) ← (HI, LO) + rs × rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as signed values, to produce a 64-bit multiply result. The 64-bit multiply result
is added to the contents in special registers HI and LO. The low-order 32-bit word of the
result is placed into special register LO and GPR rd, and the high-order 32-bit word of the
result is placed into special register HI.

No arithmetic exception occurs under any circumstances.

If GPR rd is omitted in assembly language, 0 is used as the default value.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
prod ← (HI31..0 || LO31..0) + GPR[rs]31..0 * GPR[rt]31..0

LO63..0 ← (prod 31)32 || prod31..0

HI63..0 ← (prod 63)32 || prod63..32

GPR[rd]63..0 ← (prod 31)32 || prod31..0

Exceptions:

None

Programming Notes:

In C790, the integer multiply accumulate operation proceeds asynchronously and allows
other CPU instructions to execute before it is retired. An attempt to read LO or HI
registers before the results are written will cause an interlock until the results are ready.
Asynchronous execution does not affect the program result, but offers an opportunity for
performance improvement by scheduling the multiply so that other instructions can
execute in parallel.

Appendix B C790-Specific Instruction Set Details

B-12

MADD1 MADD1Multiply-Add word Pipeline 1

MMI
011100

MADD1
100000rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: MADD1 rs, rt

MADD1 rd, rs, rt

Purpose: To multiply 32-bit signed integers and add in Pipeline 1.

Description: (rd, HI1, LO1) ← (HI1, LO1) + rs × rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as signed values, to produce a 64-bit multiply result. The 64-bit multiply result
is added to the contents in special registers HI1 (= HI127..64) and LO1 (= LO127..64). The low-
order 32-bit word of the result is placed into special register LO1 and GPR rd, and the
high-order 32-bit word of the result is placed into special register HI1.

No arithmetic exception occurs under any circumstances.

If GPR rd is omitted in assembly language, 0 is used as the default value.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
prod ← (HI95..64 || LO95..64) + GPR[rs]31..0 * GPR[rt]31..0

LO127..64 ← (prod 31)32 || prod31..0

HI127..64 ← (prod 63)32 || prod63..32

GPR[rd]63..0 ← (prod 31)32 || prod31..0

Exceptions:

None

Programming Notes:

In the C790, the integer multiply accumulate operation proceeds asynchronously and
allows other CPU instructions to execute before it is retired. An attempt to read LO1 or
HI1 registers before the results are written will cause an interlock until the results are
ready. Asynchronous execution does not affect the program result, but offers an
opportunity for performance improvement by scheduling the multiply so that other
instructions can execute in parallel.

Appendix B C790-Specific Instruction Set Details

B-13

MADDU MADDUMultiply-Add Unsigned word

MMI
011100

MADDU
000001rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: MADDU rs, rt

MADDU rd, rs, rt

Purpose: To multiply 32-bit unsigned integers and add.

Description: (rd, HI, LO) ← (HI, LO) + rs × rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as unsigned values, to produce a 64-bit multiply result. The 64-bit multiply
result is added to the contents in special registers HI and LO. The low-order 32-bit word of
the result is placed into special register LO and GPR rd, and the high-order 32-bit word of
the result is placed into special register HI.

No arithmetic exception occurs under any circumstances.

If GPR rd is omitted in assembly language, 0 is used as the default value.

Restrictions:

If either GPR rt or GPR rs do not contain zero-extended 32-bit values (bits 63..32 equal
zero), then the result of the operation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
prod ← (HI31..0 || LO31..0) + (0 || GPR[rs]31..0) * (0 || GPR[rt]31..0)
LO63..0 ← (prod 31)32 || prod31..0

HI63..0 ← (prod 63)32 || prod63..32

GPR[rd] 63..0 ← (prod 31)32 || prod31..0

Exceptions:

None

Programming Notes:

See the Programming Notes for the MADD instruction

Appendix B C790-Specific Instruction Set Details

B-14

MADDU1 MADDU1Multiply-Add Unsigned word Pipeline 1

MMI
011100

MADDU1
100001rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: MADDU1 rs, rt

MADDU1 rd, rs, rt

Purpose: To multiply 32-bit unsigned integers and add in Pipeline 1.

Description: (rd, HI1, LO1) ← (HI1, LO1) + rs × rt

The 32-bit value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as unsigned values, to produce a 64-bit multiply result. The 64-bit multiply
result is added to the contents in special registers HI1 (= HI127..64) and LO1 (= LO127..64).
The low-order 32-bit word of the result is placed into special register LO1 and GPR rd,
and the high-order 32-bit word of the result is placed into special register HI1.

No arithmetic exception occurs under any circumstances.

If GPR rd is omitted in assembly language, 0 is used as the default value.

Restrictions:

If either GPR rt or GPR rs do not contain zero-extended 32-bit values (bits 63..32 equal
zero), then the result of the operation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
prod ← (HI95..64 || LO95..64) + (0 || GPR[rs]31..0) * (0 || GPR[rt]31..0)
LO127..64 ← (prod 31)32 || prod31..0

HI127..64 ← (prod 63)32 || prod63..32

GPR[rd]63..0 ← (prod 31)32 || prod31..0

Exceptions:

None

Programming Notes:

See the Programming Notes for the MADD1 instruction

Appendix B C790-Specific Instruction Set Details

B-15

MFHI1 MFHI1Move From HI1 Register

MMI
011100

MFHI1
010000rd 0

00000
0

0000000000

 31 26 25 16 15 11 10 6 5 0

 6 10 5 5 6

C790

Format: MFHI1 rd

Purpose: To copy the special purpose register HI1 to a GPR.

Description: rd ← HI1

The contents of special register HI1 (= HI127..64) are loaded into GPR rd.

Restrictions:

None

Operation:
GPR[rd]63..0 ← HI127..64

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-16

MFLO1 MFLO1Move From LO1 Register

MMI
011100

MFLO1
010010rd 0

00000
0

0000000000

 31 26 25 16 15 11 10 6 5 0

 6 10 5 5 6

C790

Format: MFLO1 rd

Purpose: To copy the special purpose LO1 register to a GPR.

Description: rd ← LO1

The contents of special register LO1 (= LO127..64) are loaded into GPR rd.

Restrictions:

None

Operation:
GPR[rd]63..0 ← LO127..64

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-17

MFSA MFSAMove from Shift Amount Register

SPECIAL
000000

MFSA
101000rd0

00 0000 0000
0

00000

 31 26 25 16 15 11 10 6 5 0

 6 10 5 5 6

C790

Format: MFSA rd

Purpose: To copy the shift amount register SA to a GPR.

Description: rd ← SA

The contents of SA, the special register storing the funnel shift amount, is loaded into
GPR rd. Note that the shift amount is encoded in SA in an implementation-defined
manner. Therefore, it is not meaningful for software to operate on the value returned in rd.
The sole purpose of this instruction is to permit the shift amount to be saved during a
context switch. The MTSA instruction should be used to restore the state of SA.

Restrictions:

None

Operation:
GPR[rd]63..0 ← SA

Exceptions:

None

Implementation Note:

This instruction executes only in pipeline 0.

Appendix B C790-Specific Instruction Set Details

B-18

MTHI1 MTHI1Move To HI1 Register

MMI
011100

MTHI1
010001rs 0

000000000000000

 31 26 25 21 20 6 5 0

 6 5 15 6

C790

Format: MTHI1 rs

Purpose: To copy a GPR to the special purpose register HI1.

Description: HI1 ← rs

The contents of GPR rs are loaded into special register HI1 (= HI127..64).

Restrictions:

None

Operation:
HI127..64 ← GPR[rs]63..0

Exceptions:

None

Programming Notes:

None

Appendix B C790-Specific Instruction Set Details

B-19

MTLO1 MTLO1Move To LO1 Register

MMI
011100

MTLO1
010011rs 0

000000000000000

 31 26 25 21 20 6 5 0

 6 5 15 6

C790

Format: MTLO1 rs

Purpose: To copy a GPR to the special purpose register LO1.

Description: LO1 ← rs

The contents of GPR rs are loaded into special register LO1 (= LO127..64).

Restrictions:
None

Operation:
LO127..64 ← GPR[rs]63..0

Exceptions:

None

Programming Notes:

None

Appendix B C790-Specific Instruction Set Details

B-20

MTSA MTSAMove to Shift Amount Register

SPECIAL
000000

MTSA
101001rs 0

000 0000 0000 0000

 31 26 25 21 20 6 5 0

 6 5 15 6

C790

Format: MTSA rs

Purpose: To copy a GPR to the shift amount register SA.

Description: SA ← rs

The contents of GPR rs are loaded into SA, the special register storing the funnel shift
amount. Note that rs must contain a value that was originally generated by MFSA. If
some other user-generated value is in rs, the shifting action performed by the funnel
shifter is not defined; that is, MTSA cannot be used to by a program to set a new funnel
shift amount. This is because the shift amount is encoded in SA in an implementation-
defined manner. The sole purpose of this instruction is to permit the shift amount to be
restored during a context switch.

Restrictions:
Note that the three instructions statically preceding a MTSA instruction must not read or
write the SA register; that is, they cannot be either of the instructions MFSA, QFSRV, or
MTSAx.

Use the MTSAB and MTSAH instructions to set a new funnel shift amount.

Operation:
SA ← GPR[rs]63..0

Exceptions:

None

Implementation Note:

1. MTSA updates the SA register in the A Stage. To keep exception processing simple,
this requires that the cycle prior to MTSA not read the SA register. Also, when
single stepping, making sure that SA always contains the value of the SA write
instruction, just single stepped, requires that the cycle after MTSA not write the
SA register. Both these rules are enforced by the architectural requirement that
the three instructions prior to MTSA not read SA.

2. The MTSA instruction executes only in pipeline 0.

Appendix B C790-Specific Instruction Set Details

B-21

MTSAB MTSABMove Byte Count to Shift Amount Register

REGIMM
000001 immediaters

 31 26 25 21 20 16 15 0

 6 5 5 16

MTSAB
11000

C790

Format: MTSAB rs, immediate

Purpose: To copy a GPR to the shift amount register SA.

Description: SA ← (rs xor immediate) x 8

The least-significant four bits of GPR rs are XORed with the least-significant four bits of
the immediate value. The resulting four bits are interpreted as a byte shift amount and
stored into SA, the special register storing the funnel shift amount.

Restrictions:

The three instructions statically preceding a MTSAB instruction must not read the SA
register; that is, they cannot be either of the instructions MFSA or QFSRV.

Operation:
SA ← (GPR[rs]3..0 xor immediate3..0) * 8

Exceptions:

None

Implementation Note:

1. MTSAB updates the SA register in the A Stage. To keep exception processing
simple, this requires that the cycle prior to MTSAB not read the SA register. Also,
when single stepping, making sure that SA always contains the value of the SA
write instruction, just single stepped, requires that the cycle after the MTSAB not
write the SA register. Both these rules are enforced by the architectural
requirement that the three instructions prior to MTSAB not read SA.

2. The MTSAB instruction executes only in pipeline 0.

Programming Note:

MTSAB allows the user to load either a variable shift amount or a fixed shift amount, as
follows:

mtsab 0, 5 // Set shift amount to “5 bytes”
mtsab 10, 0 // Set byte shift amount to contents of GPR10

Appendix B C790-Specific Instruction Set Details

B-22

MTSAH MTSAHMove Halfword Count to Shift Amount
Register

REGIMM
000001 immediaters

 31 26 25 21 20 16 15 0

 6 5 5 16

MTSAH
11001

C790

Format: MTSAH rs, immediate

Purpose: To copy a GPR to the shift amount register SA.

Description: SA ← (rs xor immediate) x 16

The least-significant three bits of GPR rs are XORed with the least-significant three bits
of the immediate value. The resulting three bits are interpreted as a halfword shift
amount and stored into SA, the special register storing the funnel shift amount.

Restrictions:

The three instructions statically preceding a MTSAB instruction must not read the SA
register; that is, they cannot be either of the instructions MFSA or QFSRV.

Operation:
SA ← (GPR[rs]2..0 xor immediate2..0) * 16

Exceptions:

None

Implementation Note:

1. MTSAH updates the SA register in the A Stage. To keep exception processing
simple, this requires that the cycle prior to MTSAH not read the SA register. Also,
when single stepping, making sure that SA always contains the value of the SA
write instruction, just single stepped, requires that the cycle after MTSAH not
write the SA register. Both these rules are enforced by the architectural
requirement that the three instructions prior to MTSAH not read SA.

2. The MTSAH instruction executes only in pipeline 0.

Programming Note:

MTSAH allows the user to load either a variable shift amount or a fixed shift amount, as
follows:

mtsah 0, 5 // Set shift amount to “5 halfwords”
mtsah 10, 0 // Set halfword shift amount to value of GPR10

Appendix B C790-Specific Instruction Set Details

B-23

MULT MULTMultiply Word

SPECIAL
000000

MULT
011000rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: MULT rd, rs, rt
MULT rs, rt

Purpose: To multiply 32-bit signed integers.

Description: (rd, LO, HI) ← rs × rt

The 32-bit value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as signed values, to produce a 64-bit result. The low-order 32-bits of the result is
placed into special register LO and GPR rd, and the high-order 32-bit of the result is
placed into special register HI.

No arithmetic exception occurs under any circumstances.

If GPR rd is omitted in assembly language, 0 is used as the default value.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif

prod ← GPR[rs]31..0 * GPR[rt]31..0

LO63..0 ← (prod 31)32 || prod31..0

HI63..0 ← (prod 63)32 || prod63..32

GPR[rd] 63..0 ← (prod 31)32 || prod31..0

Exceptions:

None

Programming Notes:

In the C790, the integer multiply operation allows other CPU instructions to execute out-
of-order. An attempt to read LO or HI registers before the results are written will cause
an interlock until the results are ready. Asynchronous execution does not affect the
program result, but offers an opportunity for performance improvement by scheduling the
multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Appendix B C790-Specific Instruction Set Details

B-24

MULT1 MULT1Multiply Word Pipeline 1

MMI
011100

MULT1
011000rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: MULT1 rd, rs, rt
MULT1 rs, rt

Purpose: To multiply 32-bit signed integers in Pipeline 1.

Description: (rd, HI1, LO1) ← rs × rt

The 32-bit value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as signed values, to produce a 64-bit result. The low-order 32-bits of the result is
placed into special register LO1 (= LO127..64) and GPR rd, and the high-order 32-bits of the
result is placed into special register HI1 (= HI127..64).

No arithmetic exceptions occurs under any circumstances.

If GPR rd is omitted in assembly language, 0 is used as the default value.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif

prod ← GPR[rs]31..0 * GPR[rt]31..0

LO127..64 ← (prod 31)32 || prod 31..0

HI127..64 ← (prod 63)32 || prod 63..32

GPR[rd]63..0 ← (prod 31)32 || prod31..0

Exceptions:

None

Programming Notes:

In the C790 the integer multiply operation allows other CPU instructions to execute out-
of-order. An attempt to read LO1 or HI1 before the results are written will cause an
interlock until the results are ready. Asynchronous execution does not affect the program
result, but offers an opportunity for performance improvement by scheduling the multiply
so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Appendix B C790-Specific Instruction Set Details

B-25

MULTU MULTUMultiply Unsigned Word

SPECIAL
000000

MULTU
011001rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: MULTU rd, rs, rt
MULTU rs, rt

Purpose: To multiply 32-bit unsigned integers.

Description: (rd, HI, LO) ← rs × rt

The 32-bit value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as unsigned values, to produce a 64-bit result. The low-order 32-bit of the result
is placed into special register LO and GPR rd, and the high-order 32-bits of the result is
placed into special register HI.

No arithmetic exception occurs under any circumstances.

If GPR rd is omitted in assembly language, 0 is used as the default value.

Restrictions:

If either GPR rt or GPR rs do not contain zero-extended 32-bit values (bits 63..32 equal
zero), then the result of the operation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif

prod ← (0 || GPR[rs]31..0) * (0 || GPR[rt]31..0)
LO63..0 ← (prod 31)32 || prod31..0

HI 63..0 ← (prod 63)32 || prod63..32

GPR[rd] 63..0 ← (prod 31)32 || prod31..0

Exceptions:
None

Programming Notes:

See the Programming Notes for the MULT instruction.

Appendix B C790-Specific Instruction Set Details

B-26

MULTU1 MULTU1Multiply Unsigned Word Pipeline 1

MMI
011100

MULTU1
011001rt rd 0

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: MULTU1 rd, rs, rt
MULTU1 rs, rt

Purpose: To multiply 32-bit unsigned integers in Pipeline 1.

Description: (rd, HI1, LO1) ← rs × rt

The 32-bit value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as unsigned values, to produce a 64-bit result. The low-order 32-bit of the result
is placed into special register LO1 (= LO127..64) and GPR rd, and the high-order 32-bit of
the result is placed into special register HI1 (= HI127..64).

No arithmetic exceptions occurs under any circumstances.

If GPR rd is omitted in assembly language, 0 is used as the default value.

Restrictions:

If either GPR rt or GPR rs do not contain zero-extended 32-bit values (bits 63..32 equal
zero), then the result of the operation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif

prod ← (0 || GPR[rs]31..0) * (0 || GPR[rt]31..0)
LO127..64 ← (prod 31)32 || prod 31..0

HI127..64 ← (prod 63)32 || prod 63..32

GPR[rd]63..0 ← (prod 31)32 || prod 31..0

Exceptions:

None

Programming Notes:

See the Programming Notes for the MULT1 instruction.

Appendix B C790-Specific Instruction Set Details

B-27

PABSH PABSHParallel Absolute Halfword

MMI
011100

MMI1
101000rt rd PABSH

00101
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PABSH rd, rt

Purpose: To calculate the absolute value of 8 16-bit integers in parallel.

Description: rd ← rt

The absolute value of the eight signed halfword values in GPR rt are placed into the
corresponding eight halfwords in GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← GPR[rt]15..0
GPR[rd]31..16 ← GPR[rt]31..16
GPR[rd]47..32 ← GPR[rt]47..32
GPR[rd]63..48 ← GPR[rt]63..48
GPR[rd]79..64 ← GPR[rt]79..64
GPR[rd]95..80 ← GPR[rt]95..80
GPR[rd]111..96 ← GPR[rt]111..96
GPR[rd]127..112 ← GPR[rt]127..112

rt A7 A6 A5 A4 A3 A2 A1 A0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rd A7 A6 A5 A4 A3 A2 A1 A0

Supplementary explanation:

When the halfword value in GPR rt is 0x8000 (-32768), the smallest negative value, the
operation will result in an overflow. However, overflow exception doesn’t occur; the result
is truncated to the largest positive number - 0x7FFF (+32767) .

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-28

PABSW PABSWParallel Absolute Word

MMI
011100

MMI1
101000rt rd PABSW

00001
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PABSW rd, rt

Purpose: To calculate the absolute value of 4 32-bit integers in parallel.

Description: rd ← rt

The absolute value of the four signed word values in GPR rt are placed into the
corresponding four words in GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]31..0 ← GPR[rt]31..0
GPR[rd]63..32 ← GPR[rt]63..32
GPR[rd]95..64 ← GPR[rt]95..64
GPR[rd]127..96 ← GPR[rt]127..96

rt A3 A2 A1 A0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd A3 A2 A1 A0

Supplementary explanation:

When the word value of the GPR rt is equal to 0x80000000 (-2147483648), the smallest
negative number, the operation will result in an overflow. However, if an overflow
exception doesn’t occur; the result is truncated to the largest positive value - 0x7FFFFFFF
(+2147483647).

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-29

PADDB PADDBParallel Add Byte

MMI
011100

MMI0
001000rt rd PADDB

01000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADDB rd, rs, rt

Purpose: To add 16 pairs of 8-bit integers in parallel.

Description: rd ← rs + rt

The sixteen byte values in GPR rs are added to the corresponding sixteen byte values in
GPR rt in parallel. The results are placed into the corresponding sixteen bytes in GPR rd.

No overflow or underflow exceptions are generated under any circumstances.
This instruction operates on 128-bit registers.

Operation:
GPR[rd]7..0 ← (GPR[rs]7..0 + GPR[rt]7..0)7..0

GPR[rd]15..8 ← (GPR[rs]15..8 + GPR[rt]15..8)7..0

GPR[rd]23..16 ← (GPR[rs]23..16 + GPR[rt]23..16)7..0

GPR[rd]31..24 ← (GPR[rs]31..24 + GPR[rt]31..24)7..0

GPR[rd]39..32 ← (GPR[rs]39..32 + GPR[rt]39..32)7..0

GPR[rd]47..40 ← (GPR[rs]47..40 + GPR[rt]47..40)7..0

GPR[rd]55..48 ← (GPR[rs]55..48 + GPR[rt]55..48)7..0

GPR[rd]63..56 ← (GPR[rs]63..56 + GPR[rt]63..56)7..0

GPR[rd]71..64 ← (GPR[rs]71..64 + GPR[rt]71..64)7..0

GPR[rd]79..72 ← (GPR[rs]79..72 + GPR[rt]79..72)7..0

GPR[rd]87..80 ← (GPR[rs]87..80 + GPR[rt]87..80)7..0

GPR[rd]95..88 ← (GPR[rs]95..88 + GPR[rt]95..88)7..0

GPR[rd]103..96 ← (GPR[rs]103..96 + GPR[rt]103..96)7..0

GPR[rd]111..104 ← (GPR[rs]111..104 + GPR[rt]111. .104)7..0

GPR[rd]119..112 ← (GPR[rs]119..112 + GPR[rt]119..112)7..0

GPR[rd]127..120 ← (GPR[rs]127..120 + GPR[rt]127..120)7..0

rs A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

rt B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

 + + + + + + + + + + + + + + + +

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
A0
+

B0

A1
+

B1

A2
+

B2

A3
+

B3

A4
+

B4

A5
+

B5

A6
+

B6

A7
+

B7

A8
+

B8

A9
+

B9

A10
+

B10

A11
+

B11

A12
+

B12

A13
+

B13

A14
+

B14

A15
+

B15
rd

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-30

PADDH PADDHParallel Add Halfword

MMI
011100

MMI0
001000rt rd PADDH

00100rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADDH rd, rs, rt

Purpose: To add 8 pairs of 16-bit integers in parallel.

Description: rd ← rs + rt

The eight halfword values in GPR rs are added to the corresponding eight halfword values
in GPR rt in parallel. The results are placed into the corresponding eight halfwords in
GPR rd.

No overflow or underflow exceptions are generated under any circumstances.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← (GPR[rs]15..0 + GPR[rt]15..0)15..0

GPR[rd]31..16 ← (GPR[rs]31..16 + GPR[rt]31..16)15..0

GPR[rd]47..32 ← (GPR[rs]47..32 + GPR[rt]47..32)15..0

GPR[rd]63..48 ← (GPR[rs]63..48 + GPR[rt]63..48)15..0

GPR[rd]79..64 ← (GPR[rs]79..64 + GPR[rt]79..64)15..0

GPR[rd]95..80 ← (GPR[rs]95..80 + GPR[rt]95..80)15..0

GPR[rd]111..96 ← (GPR[rs]111..96 + GPR[rt]111..96)15..0

GPR[rd]127..112 ← (GPR[rs]127..112 + GPR[rt]127..112)15..0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd A7+B7 A6+B6 A5+B5 A4+B4 A3+B3 A2+B2 A1+B1 A0+B0

rt B7 B6 B5 B4 B3 B2 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 + + + + + + + +

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-31

PADDSB PADDSBParallel Add with Signed saturation Byte

MMI
011100

MMI0
001000rt rd PADDSB

11000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADDSB rd, rs, rt

Purpose: To add 16 pairs of 8-bit signed integers with saturation in parallel.

Description: rd ← rs + rt

The sixteen signed byte values in GPR rs are added to the corresponding sixteen signed
byte values in GPR rt in parallel. The results are placed into the corresponding sixteen
bytes in GPR rd.

No overflow or underflow exceptions are generated under any circumstances. Results
beyond the range of a signed byte value are saturated according to the following:

Overflow: 0x7F

Underflow: 0x80

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]7..0 + GPR[rt]7..0) > 0x7F) then
 GPR[rd]7..0 ← 0x7F
else if (0x100 <= (GPR[rs]7..0 + GPR[rt]7..0) < 0x180) then
 GPR[rd]7..0 ← 0x80
else
 GPR[rd]7..0 ← (GPR[rs]7..0 + GPR[rt]7..0)7..0

endif

if ((GPR[rs]15..8 + GPR[rt]15..8) > 0x7F) then
 GPR[rd]15..8 ← 0x7F
else if (0x100 <= (GPR[rs]15..8 + GPR[rt]15..8) < 0x180) then
 GPR[rd]15..8 ← 0x80
else
 GPR[rd]15..8 ← (GPR[rs]15..8 + GPR[rt]15..8)7..0

endif

if ((GPR[rs]23..16 + GPR[rt]23..16) > 0x7F) then
 GPR[rd]23..16 ← 0x7F
else if (0x100 <= (GPR[rs]23..16 + GPR[rt]23..16) < 0x180) then
 GPR[rd]23..16 ← 0x80
else
 GPR[rd]23..16 ← (GPR[rs]23..16 + GPR[rt]23..16)7..0

endif

if ((GPR[rs]31..24 + GPR[rt]31..24) > 0x7F) then
 GPR[rd]31..24 ← 0x7F
else if (0x100 <= (GPR[rs]31..24 + GPR[rt]31..24) < 0x180) then

Appendix B C790-Specific Instruction Set Details

B-32

 GPR[rd]31..24 ← 0x80
else
 GPR[rd]31..24 ← (GPR[rs]31..24 + GPR[rt]31..24)7..0

endif

if ((GPR[rs]39..32 + GPR[rt]39..32) > 0x7F) then
 GPR[rd]39..32 ← 0x7F
else if (0x100 <= (GPR[rs]39..32 + GPR[rt]39..32) < 0x180) then
 GPR[rd]39..32 ← 0x80
else
 GPR[rd]39..32 ← (GPR[rs]39..32 + GPR[rt]39..32)7..0

endif

if ((GPR[rs]47..40 + GPR[rt]47..40) > 0x7F) then
 GPR[rd]47..40 ← 0x7F
else if (0x100 <= (GPR[rs]47..40 + GPR[rt]47..40) < 0x180) then
 GPR[rd]47..40 ← 0x80
else
 GPR[rd]47..40 ← (GPR[rs]47..40 + GPR[rt]47..40)7..0

endif

if ((GPR[rs]55..48 + GPR[rt]55..48) > 0x7F) then
 GPR[rd]55..48 ← 0x7F
else if (0x100 <= (GPR[rs]55..48 + GPR[rt]55..48) < 0x180) then
 GPR[rd]55..48 ← 0x80
else
 GPR[rd]55..48 ← (GPR[rs]55..48 + GPR[rt]55..48)7..0

endif

if ((GPR[rs]63..56 + GPR[rt]63..56) > 0x7F) then
 GPR[rd]63..56 ← 0x7F
else if (0x100 <= (GPR[rs]63..56 + GPR[rt]63..56) < 0x180) then
 GPR[rd]63..56 ← 0x80
else
 GPR[rd]63..56 ← (GPR[rs]63..56 + GPR[rt]63..56)7..0

endif

if ((GPR[rs]71..64 + GPR[rt]71..64) > 0x7F) then
 GPR[rd]71..64 ← 0x7F
else if (0x100 <= (GPR[rs]71..64 + GPR[rt]71..64) < 0x180) then
 GPR[rd]71..64 ← 0x80
else
 GPR[rd]71..64 ← (GPR[rs]71..64 + GPR[rt]71..64)7..0

endif

if ((GPR[rs]79..72 + GPR[rt]79..72) > 0x7F) then
 GPR[rd]79..72 ← 0x7F
else if (0x100 <= (GPR[rs]79..72 + GPR[rt]79..72) < 0x180) then
 GPR[rd]79..72 ← 0x80
else
 GPR[rd]79..72 ← (GPR[rs]79..72 + GPR[rt]79..72)7..0

endif

if ((GPR[rs]87..80 + GPR[rt]87..80) > 0x7F) then
 GPR[rd]87..80 ← 0x7F

Appendix B C790-Specific Instruction Set Details

B-33

else if (0x100 <= (GPR[rs]87..80 + GPR[rt]87..80) < 0x180) then
 GPR[rd]87..80 ← 0x80
else
 GPR[rd]87..80 ← (GPR[rs]87..80 + GPR[rt]87..80)7..0

endif

if ((GPR[rs]95..88 + GPR[rt]95..88) > 0x7F) then
 GPR[rd]95..88 ← 0x7F
else if (0x100 <= (GPR[rs]95..88 + GPR[rt]95..88) < 0x180) then
 GPR[rd]95..88 ← 0x80
else
 GPR[rd]95..88 ← (GPR[rs]95..88 + GPR[rt]95..88)7..0

endif

if ((GPR[rs]103..96 + GPR[rt]103..96) > 0x7F) then
 GPR[rd]103..96 ← 0x7F
else if (0x100 <= (GPR[rs]103..96 + GPR[rt]103..96) < 0x180) then
 GPR[rd]103..96 ← 0x80
else
 GPR[rd]103..96 ← (GPR[rs]103..96 + GPR[rt]103..96)7..0

endif

if ((GPR[rs]111..104 + GPR[rt]111..104) > 0x7F) then
 GPR[rd]111..104 ← 0x7F
else if (0x100 <= (GPR[rs]111..104 + GPR[rt]111..104) < 0x180) then
 GPR[rd]111..104 ← 0x80
else
 GPR[rd]111..104 ← (GPR[rs]111..104 + GPR[rt]111..104)7..0

endif

if ((GPR[rs]119..112 + GPR[rt]119..112) > 0x7F) then
 GPR[rd]119..112 ← 0x7F
else if (0x100 <= (GPR[rs]119..112 + GPR[rt]119..112) < 0x180) then
 GPR[rd]119..112 ← 0x80
else
 GPR[rd]119..112 ← (GPR[rs]119..112 + GPR[rt]119..112)7..0

endif

if ((GPR[rs]127..120 + GPR[rt]127..120) > 0x7F) then
 GPR[rd]127..120 ← 0x7F
else if (0x100 <= (GPR[rs]127..120 + GPR[rt]127..120) < 0x180) then
 GPR[rd]127..120 ← 0x80
else
 GPR[rd]127..120 ← (GPR[rs]127..120 + GPR[rt]127..120)7..0

endif

Appendix B C790-Specific Instruction Set Details

B-34

rs A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

rt B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

 + + + + + + + + + + + + + + + +

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
A0
+

B0

A1
+

B1

A2
+

B2

A3
+

B3

A4
+

B4

A5
+

B5

A6
+

B6

A7
+

B7

A8
+

B8

A9
+

B9

A10
+

B10

A11
+

B11

A12
+

B12

A13
+

B13

A14
+

B14

A15
+

B15
rd*

 * Saturate to signed byte

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-35

PADDSH PADDSHParallel Add with Signed saturation Halfword

MMI
011100

MMI0
001000rt rd PADDSH

10100rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADDSH rd, rs, rt

Purpose: To add 8 pairs of 16-bit signed integers with saturation in parallel.

Description: rd ← rs + rt

The eight signed halfword values in GPR rs are added to the corresponding eight signed
halfword values in GPR rt in parallel. The results are placed into the corresponding eight
halfwords in GPR rd.

No overflow or underflow exceptions are generated under any circumstances. Results
beyond the range of a signed halfword value are saturated according to the following:

Overflow: 0x7FFF

Underflow: 0x8000

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]15..0 + GPR[rt]15..0) > 0x7FFF) then
 GPR[rd]15..0 ← 0x7FFF
else if (0x10000 <= (GPR[rs]15..0 + GPR[rt]15..0) < 0x18000) then
 GPR[rd]15..0 ← 0x8000
else
 GPR[rd]15..0 ← (GPR[rs]15..0 + GPR[rt]15..0)15..0

endif

if ((GPR[rs]31..16 + GPR[rt]31..16) > 0x7FFF) then
 GPR[rd]31..16 ← 0x7FFF
else if (0x10000 <= (GPR[rs]31..16 + GPR[rt]31..16) < 0x18000) then
 GPR[rd]31..16 ← 0x8000
else
 GPR[rd]31..16 ← (GPR[rs]31..16 + GPR[rt]31..16)15..0

endif

if ((GPR[rs]47..32 + GPR[rt]47..32) > 0x7FFF) then
 GPR[rd]47..32 ← 0x7FFF
else if (0x10000 <= (GPR[rs]47..32 + GPR[rt]47..32) < 0x18000) then
 GPR[rd]47..32 ← 0x8000
else
 GPR[rd]47..32 ← (GPR[rs]47..32 + GPR[rt]47..32)15..0

endif

Appendix B C790-Specific Instruction Set Details

B-36

if ((GPR[rs]63..48 + GPR[rt]63..48) > 0x7FFF) then
 GPR[rd]63..48 ← 0x7FFF
else if (0x10000 <= (GPR[rs]63..48 + GPR[rt]63..48) < 0x18000) then
 GPR[rd]63..48 ← 0x8000
else
 GPR[rd]63..48 ← (GPR[rs]63..48 + GPR[rt]63..48)15..0

endif

if ((GPR[rs]79..64 + GPR[rt]79..64) > 0x7FFF) then
 GPR[rd]79..64 ← 0x7FFF
else if (0x10000 <= (GPR[rs]79..64 + GPR[rt]79..64) < 0x18000) then
 GPR[rd]79..64 ← 0x8000
else
 GPR[rd]79..64 ← (GPR[rs]79..64 + GPR[rt]79..64)15..0

endif

if ((GPR[rs]95..80 + GPR[rt]95..80) > 0x7FFF) then
 GPR[rd]95..80 ← 0x7FFF
else if (0x10000 <= (GPR[rs]95..80 + GPR[rt]95..80) < 0x18000) then
 GPR[rd]95..80 ← 0x8000
else
 GPR[rd]95..80 ← (GPR[rs]95..80 + GPR[rt]95..80)15..0

endif

if ((GPR[rs]111..96 + GPR[rt]111..96) > 0x7FFF) then
 GPR[rd]111..96 ← 0x7FFF
else if (0x10000 <= (GPR[rs]111..96 + GPR[rt]111..96) < 0x18000) then
 GPR[rd]111..96 ← 0x8000
else
 GPR[rd]111..96 ← (GPR[rs]111..96 + GPR[rt]111..96)15..0

endif

if ((GPR[rs]127..112 + GPR[rt]127..112) > 0x7FFF) then
 GPR[rd]127..112 ← 0x7FFF
else if (0x10000 <= (GPR[rs]127..112 + GPR[rt]127..112) < 0x18000) then
 GPR[rd]127..112 ← 0x8000
else
 GPR[rd]127..112 ← (GPR[rs]127..112 + GPR[rt]127..112)15..0

endif

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd* A7+B7 A6+B6 A5+B5 A4+B4 A3+B3 A2+B2 A1+B1 A0+B0

rt B7 B6 B5 B4 B3 B2 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 + + + + + + + +

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 * Saturate to signed halfword

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-37

PADDSW PADDSWParallel Add with Signed saturation Word

MMI
011100

MMI0
001000rt rd PADDSW

10000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADDSW rd, rs, rt

Purpose: To add 4 pairs of 32-bit signed integers with saturation in parallel.

Description: rd ← rs + rt

The four signed word values in GPR rs are added to the corresponding four signed word
values in GPR rt in parallel. The results are placed into to the corresponding four words in
GPR rd.

No overflow or underflow exceptions are generated under any circumstances. Results
beyond the range of a signed word value are saturated according to the following:

Overflow: 0x7FFFFFFF

Underflow: 0x80000000

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]31..0 + GPR[rt]31..0) > 0x7FFFFFFF) then
 GPR[rd]31..0 ← 0x7FFFFFFF
else if (0x100000000 <= (GPR[rs]31..0 + GPR[rt]31..0) < 0x180000000) then
 GPR[rd]31..0 ← 0x80000000
else
 GPR[rd]31..0 ← (GPR[rs]31..0 + GPR[rt]31..0)31..0

endif

if ((GPR[rs]63..32 + GPR[rt]63..32) > 0x7FFFFFFF) then
 GPR[rd]63..32 ← 0x7FFFFFFF
else if (0x100000000 <= (GPR[rs]63..32 + GPR[rt]63..32) < 0x180000000) then
 GPR[rd]63..32 ← 0x80000000
else
 GPR[rd]63..32 ← (GPR[rs]63..32 + GPR[rt]63..32)31..0

endif

if ((GPR[rs]95..64 + GPR[rt]95..64) > 0x7FFFFFFF) then
 GPR[rd]95..64 ← 0x7FFFFFFF
else if (0x100000000 <= (GPR[rs]95..64 + GPR[rt]95..64) < 0x180000000) then
 GPR[rd]95..64 ← 0x80000000
else
 GPR[rd]95..64 ← (GPR[rs]95..64 + GPR[rt]95..64)31..0

endif

Appendix B C790-Specific Instruction Set Details

B-38

if ((GPR[rs]127..96 + GPR[rt]127..96) > 0x7FFFFFFF) then
 GPR[rd]127..96 ← 0x7FFFFFFF
else if (0x100000000 <= (GPR[rs]127..96 + GPR[rt]127..96) < 0x180000000) then
 GPR[rd]127..96 ← 0x80000000
else
 GPR[rd]127..96 ← (GPR[rs]127..96 + GPR[rt]127..96)31..0

endif

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rd* A3+B3 A2+B2 A1+B1 A0+B0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

+ + + +

 * Saturate to signed word

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-39

PADDUB PADDUBParallel Add with Unsigned saturation Byte

MMI
011100

MMI1
101000rt rd PADDUB

11000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADDUB rd, rs, rt

Purpose: To add 16 pairs of 8-bit unsigned integers with saturation in parallel.

Description: rd ← rs + rt

The sixteen unsigned byte values in GPR rs are added to the corresponding sixteen
unsigned byte values in GPR rt in parallel. The results are placed into the corresponding
sixteen bytes in GPR rd.

No overflow exceptions are generated under any circumstances. Results beyond the range
of an unsigned byte value are saturated according to the following:

Overflow: 0xFF

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]7..0 + GPR[rt]7..0) > 0xFF) then
 GPR[rd]7..0 ← 0xFF
else
 GPR[rd]7..0 ← (GPR[rs]7..0 + GPR[rt]7..0)7..0

endif

if ((GPR[rs]15..8 + GPR[rt]15..8) > 0xFF) then
 GPR[rd]15..8 ← 0xFF
else
 GPR[rd]15..8 ← (GPR[rs]15..8 + GPR[rt]15..8)7..0

endif

if ((GPR[rs]23..16 + GPR[rt]23..16) > 0xFF) then
 GPR[rd]23..16 ← 0xFF
else
 GPR[rd]23..16 ← (GPR[rs]23..16 + GPR[rt]23..16)7..0

endif

if ((GPR[rs]31..24 + GPR[rt]31..24) > 0xFF) then
 GPR[rd]31..24 ← 0xFF
else
 GPR[rd]31..24 ← (GPR[rs]31..24 + GPR[rt]31..24)7..0

endif

if ((GPR[rs]39..32 + GPR[rt]39..32) > 0xFF) then
 GPR[rd]39..32 ← 0xFF
else
 GPR[rd]39..32 ← (GPR[rs]39..32 + GPR[rt]39..32)7..0

endif

Appendix B C790-Specific Instruction Set Details

B-40

if ((GPR[rs]47..40 + GPR[rt]47..40) > 0xFF) then
 GPR[rd]47..40 ← 0xFF
else
 GPR[rd]47..40 ← (GPR[rs]47..40 + GPR[rt]47..40)7..0

endif

if ((GPR[rs]55..48 + GPR[rt]55..48) > 0xFF) then
 GPR[rd]55..48 ← 0xFF
else
 GPR[rd]55..48 ← (GPR[rs]55..48 + GPR[rt]55..48)7..0

endif

if ((GPR[rs]63..56 + GPR[rt]63..56) > 0xFF) then
 GPR[rd]63..56 ← 0xFF
else
 GPR[rd]63..56 ← (GPR[rs]63..56 + GPR[rt]63..56)7..0

endif

if ((GPR[rs]71..64 + GPR[rt]71..64) > 0xFF) then
 GPR[rd]71..64 ← 0xFF
else
 GPR[rd]71..64 ← (GPR[rs]71..64 + GPR[rt]71..64)7..0

endif

if ((GPR[rs]79..72 + GPR[rt]79..72) > 0xFF) then
 GPR[rd]79..72 ← 0xFF
else
 GPR[rd]79..72 ← (GPR[rs]79..72 + GPR[rt]79..72)7..0

endif

if ((GPR[rs]87..80 + GPR[rt]87..80) > 0xFF) then
 GPR[rd]87..80 ← 0xFF
else
 GPR[rd]87..80 ← (GPR[rs]87..80 + GPR[rt]87..80)7..0

endif

if ((GPR[rs]95..88 + GPR[rt]95..88) > 0xFF) then
 GPR[rd]95..88 ← 0xFF
else
 GPR[rd]95..88 ← (GPR[rs]95..88 + GPR[rt]95..88)7..0

endif

if ((GPR[rs]103..96 + GPR[rt]103..96) > 0xFF) then
 GPR[rd]103..96 ← 0xFF
else
 GPR[rd]103..96 ← (GPR[rs]103..96 + GPR[rt]103..96)7..0

endif
if ((GPR[rs]111..104 + GPR[rt]111..104) > 0xFF) then
 GPR[rd]111..104 ← 0xFF
else
 GPR[rd]111..104 ← (GPR[rs]111..104 + GPR[rt]111..104)7..0

endif

if ((GPR[rs]119..112 + GPR[rt]119..112) > 0xFF) then

Appendix B C790-Specific Instruction Set Details

B-41

 GPR[rd]119..112 ← 0xFF
else
 GPR[rd]119..112 ← (GPR[rs]119..112 + GPR[rt]119..112)7..0

endif

if ((GPR[rs]127..120 + GPR[rt]127..120) > 0xFF) then
 GPR[rd]127..120 ← 0xFF
else
 GPR[rd]127..120 ← (GPR[rs]127..120 + GPR[rt]127..120)7..0

endif

rs A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

rt B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

 + + + + + + + + + + + + + + + +

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
A0
+

B0

A1
+

B1

A2
+

B2

A3
+

B3

A4
+

B4

A5
+

B5

A6
+

B6

A7
+

B7

A8
+

B8

A9
+

B9

A10
+

B10

A11
+

B11

A12
+

B12

A13
+

B13

A14
+

B14

A15
+

B15
rd*

 * Saturate to unsigned byte
Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-42

PADDUH PADDUHParallel Add with Unsigned saturation Halfword

MMI
011100

MMI1
101000rt rd PADDUH

10100rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADDUH rd, rs, rt

Purpose: To add 8 pairs of 16-bit unsigned integers with saturation in parallel.

Description: rd ← rs + rt

The eight unsigned halfword values in GPR rs are added to the corresponding eight
unsigned halfword values in GPR rt in parallel. The results are placed into the
corresponding eight halfwords in GPR rd.

No overflow exceptions are generated under any circumstances. Results beyond the range
of an unsigned halfword value are saturated according to the following:

Overflow: 0xFFFF

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]15..0 + GPR[rt]15..0) > 0xFFFF) then
 GPR[rd]15..0 ← 0xFFFF
else
 GPR[rd]15..0 ← (GPR[rs]15..0 + GPR[rt]15..0)15..0

endif

if ((GPR[rs]31..16 + GPR[rt]31..16) > 0xFFFF) then
 GPR[rd]31..16 ← 0xFFFF
else
 GPR[rd]31..16 ← (GPR[rs]31..16 + GPR[rt]31..16)15..0

endif

if ((GPR[rs]47..32 + GPR[rt]47..32) > 0xFFFF) then
 GPR[rd]47..32 ← 0xFFFF
else
 GPR[rd]47..32 ← (GPR[rs]47..32 + GPR[rt]47..32)15..0

endif

if ((GPR[rs]63..48 + GPR[rt]63..48) > 0xFFFF) then
 GPR[rd]63..48 ← 0xFFFF
else
 GPR[rd]63..48 ← (GPR[rs]63..48 + GPR[rt]63..48)15..0

endif

Appendix B C790-Specific Instruction Set Details

B-43

if ((GPR[rs]79..64 + GPR[rt]79..64) > 0xFFFF) then
 GPR[rd]79..64 ← 0xFFFF
else
 GPR[rd]79..64 ← (GPR[rs]79..64 + GPR[rt]79..64)15..0

endif

if ((GPR[rs]95..80 + GPR[rt]95..80) > 0xFFFF) then
 GPR[rd]95..80 ← 0xFFFF
else
 GPR[rd]95..80 ← (GPR[rs]95..80 + GPR[rt]95..80)15..0

endif

if ((GPR[rs]111..96 + GPR[rt]111..96) > 0xFFFF) then
 GPR[rd]111..96 ← 0xFFFF
else
 GPR[rd]111..96 ← (GPR[rs]111..96 + GPR[rt]111..96)15..0

endif

if ((GPR[rs]127..112 + GPR[rt]127..112) > 0xFFFF) then
 GPR[rd]127..112 ← 0xFFFF
else
 GPR[rd]127..112 ← (GPR[rs]127..112 + GPR[rt]127..112)15..0

endif

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd* A7+B7 A6+B6 A5+B5 A4+B4 A3+B3 A2+B2 A1+B1 A0+B0

rt B7 B6 B5 B4 B3 B2 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 + + + + + + + +

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 * Saturate to unsigned halfword

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-44

PADDUW PADDUWParallel Add with Unsigned saturation Word

MMI
011100

MMI1
101000rt rd PADDUW

10000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADDUW rd, rs, rt

Purpose: To add 4 pairs of 32-bit unsigned integers with saturation in parallel.

Description: rd ← rs + rt

The four unsigned word values in GPR rs are added to the corresponding four unsigned
word values in GPR rt in parallel. The results are placed into the corresponding four
words in GPR rd.

No overflow exceptions are generated under any circumstances. Results beyond the range
of an unsigned word value are saturated according to the following:

Overflow: 0xFFFFFFFF

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]31..0 + GPR[rt]31..0) > 0xFFFFFFFF) then
 GPR[rd]31..0 ← 0xFFFFFFFF
else
 GPR[rd]31..0 ← (GPR[rs]31..0 + GPR[rt]31..0)31..0

endif

if ((GPR[rs]63..32 + GPR[rt]63..32) > 0xFFFFFFFF) then
 GPR[rd]63..32 ← 0xFFFFFFFF
else
 GPR[rd]63..32 ← (GPR[rs]63..32 + GPR[rt]63..32)31..0

endif

if ((GPR[rs]95..64 + GPR[rt]95..64) > 0xFFFFFFFF) then
 GPR[rd]95..64 ← 0xFFFFFFFF
else
 GPR[rd]95..64 ← (GPR[rs]95..64 + GPR[rt]95..64)31..0

endif

if ((GPR[rs]127..96 + GPR[rt]127..96) > 0xFFFFFFFF) then
 GPR[rd]127..96 ← 0xFFFFFFFF
else
 GPR[rd]127..96 ← (GPR[rs]127..96 + GPR[rt]127..96)31..0

endif

Appendix B C790-Specific Instruction Set Details

B-45

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rd* A3+B3 A2+B2 A1+B1 A0+B0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

+ + + +

 * Saturate to unsigned word

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-46

PADDW PADDWParallel Add Word

MMI
011100

MMI0
001000rt rd PADDW

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADDW rd, rs, rt

Purpose: To add 4 pairs of 32-bit integers in parallel.

Description: rd ← rs + rt

The four word values in GPR rs are added to the corresponding four word values in GPR
rt in parallel. The results are placed into the corresponding four words in GPR rd.

No overflow or underflow exceptions are generated under any circumstances.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]31..0 ← (GPR[rs]31..0 + GPR[rt]31..0)31..0

GPR[rd]63..32 ← (GPR[rs]63..32 + GPR[rt]63..32)31..0

GPR[rd]95..64 ← (GPR[rs]95..64 + GPR[rt]95..64)31..0

GPR[rd]127..96 ← (GPR[rs]127..96 + GPR[rt]127..96)31..0

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rd A3+B3 A2+B2 A1+B1 A0+B0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

+ + + +

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-47

PADSBH PADSBHParallel Add/Subtract Halfword

MMI
011100

MMI1
101000rt rd PADSBH

00100rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PADSBH rd, rs, rt

Purpose: To add/subtract 8 pairs of 16-bit integers in parallel.

Description: rd ← rs +/− rt

The high-order four halfword values in GPR rs are added to the corresponding four
halfword values in GPR rt and the low-order four halfword values in GPR rt are
subtracted from the corresponding four halfword values in GPR rs in parallel. The results
are placed into the corresponding eight halfword values in GPR rd.

No overflow or underflow exceptions are generated under any circumstances.

This instruction operates on 128-bit registers.

Operation
GPR[rd]15..0 ← (GPR[rs]15..0 − GPR[rt]15..0)15..0

GPR[rd]31..16 ← (GPR[rs]31..16 − GPR[rt]31..16)15..0

GPR[rd]47..32 ← (GPR[rs]47..32 − GPR[rt]47..32)15..0

GPR[rd]63..48 ← (GPR[rs]63..48 − GPR[rt]63..48)15..0

GPR[rd]79..64 ← (GPR[rs]79..64 + GPR[rt]79..64)15..0

GPR[rd]95..80 ← (GPR[rs]95..80 + GPR[rt]95..80)15..0

GPR[rd]111..96 ← (GPR[rs]111..96 + GPR[rt]111..96)15..0

GPR[rd]127..112 ← (GPR[rs]127..112 + GPR[rt]127..112)15..0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd A7+B7 A6+B6 A5+B5 A4+B4 A3−B3 A2−B2 A1−B1 A0−B0

rt B7 B6 B5 B4 B3 B2 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 + + + + − − − −

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-48

PAND PANDParallel And

MMI
011100

MMI2
001001rt rd PAND

10010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PAND rd, rs, rt

Purpose: To perform a bitwise logical AND.

Description: rd ← rs AND rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND
operation. The result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]127..0 ← GPR[rs]127..0 and GPR[rt]127..0

rs A1 A0
127 64 63 0

rd A1 AND B1 A0 AND B0
127 64 63 0

rt B1 B0
127 64 63 0

AND AND

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-49

PCEQB PCEQBParallel Compare for Equal Byte

MMI
011100

MMI1
101000rt rd PCEQB

01010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PCEQB rd, rs, rt

Purpose: To record the result of 16 equality comparisons in parallel.

Description: rd ← (rs = rt)

The sixteen signed byte values in GPR rs are compared to the corresponding sixteen
signed byte values in GPR rt, in parallel. The results of the comparison are placed into
GPR rd as follows:

If the signed byte value in GPR rs is equal to the corresponding signed byte value in GPR
rt, then the corresponding byte in GPR rd is set to 0xFF otherwise it is set to 0x00.

This instruction operates on 128-bit registers.

Operation:
if (GPR[rs]7..0 = GPR[rt]7..0) then
 GPR[rd]7..0 ← 18

else
 GPR[rd]7..0 ← 08

endif

if (GPR[rs]15..8 = GPR[rt]15..8) then
 GPR[rd]15..8 ← 18

else
 GPR[rd]15..8 ← 08

endif

if (GPR[rs]23..16 = GPR[rt]23..16) then
 GPR[rd]23..16 ← 18

else
 GPR[rd]23..16 ← 08

endif

if (GPR[rs]31..24 = GPR[rt]31..24) then
 GPR[rd]31..24 ← 18

else
 GPR[rd]31..24 ← 08

endif

Appendix B C790-Specific Instruction Set Details

B-50

if (GPR[rs]39..32 = GPR[rt]39..32) then
 GPR[rd]39..32 ← 18

else
 GPR[rd]39..32 ← 08

endif

if (GPR[rs]47..40 = GPR[rt]47..40) then
 GPR[rd]47..40 ← 18

else
 GPR[rd]47..40 ← 08

endif

if (GPR[rs]55..48 = GPR[rt]55..48) then
 GPR[rd]55..48 ← 18

else
 GPR[rd]55..48 ← 08

endif

if (GPR[rs]63..56 = GPR[rt]63..56) then
 GPR[rd]63..56 ← 18

else
 GPR[rd]63..56 ← 08

endif

if (GPR[rs]71..64 = GPR[rt]71..64) then
 GPR[rd]71..64 ← 18

else
 GPR[rd]71..64 ← 08

endif

if (GPR[rs]79..72 = GPR[rt]79..72) then
 GPR[rd]79..72 ← 18

else
 GPR[rd]79..72 ← 08

endif

if (GPR[rs]87..80 = GPR[rt]87..80) then
 GPR[rd]87..80 ← 18

else
 GPR[rd]87..80 ← 08

endif

if (GPR[rs]95..88 = GPR[rt]95..88) then
 GPR[rd]95..88 ← 18

else
 GPR[rd]95..88 ← 08

endif

if (GPR[rs]103..96 = GPR[rt]103..96) then
 GPR[rd]103..96 ← 18

else
 GPR[rd]103..96 ← 08

endif

if (GPR[rs]111..104 = GPR[rt]111..104) then

Appendix B C790-Specific Instruction Set Details

B-51

 GPR[rd]111..104 ← 18

else
 GPR[rd]111..104 ← 08

endif

if (GPR[rs]119..112 = GPR[rt]119..112) then
 GPR[rd]119..112 ← 18

else
 GPR[rd]119..112 ← 08

endif

if (GPR[rs]127..120 = GPR[rt]127..120) then
 GPR[rd]127..120 ← 18

else
 GPR[rd]127..120 ← 08

endif

rs A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

rt B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

= = = = = = = = = = = = = = = =

rd 08 18 18 18 18 08 08 18 08 18 18 18 18 08 08 18

 False True True True True False False True False True True True True False False True

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-52

PCEQH PCEQHParallel Compare for Equal Halfword

MMI
011100

MMI1
101000rt rd PCEQH

00110rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PCEQH rd, rs, rt

Purpose: To record the results of 8 equality comparisons in parallel.

Description: rd ← (rs = rt)

The eight signed halfword values in GPR rs are compared to the corresponding eight
signed halfword values in GPR rt, in parallel. The results of the comparison are placed
into GPR rd as follows:

If the signed halfword value in GPR rs is equal to the corresponding signed halfword value
in GPR rt, then the corresponding halfword in GPR rd is set to 0xFFFF otherwise it is set
to 0x0000.

This instruction operates on 128-bit registers.

Operation:
if (GPR[rs]15..0 = GPR[rt]15..0) then
 GPR[rd]15..0 ← 116

else
 GPR[rd]15..0 ← 016

endif

if (GPR[rs]31..16 = GPR[rt]31..16) then
 GPR[rd]31..16 ← 116

else
 GPR[rd]31..16 ← 016

endif

if (GPR[rs]47..32 = GPR[rt]47..32) then
 GPR[rd]47..32 ← 116

else
 GPR[rd]47..32 ← 016

endif

if (GPR[rs]63..48 = GPR[rt]63..48) then
 GPR[rd]63..48 ← 116

else
 GPR[rd]63..48 ← 016

endif

Appendix B C790-Specific Instruction Set Details

B-53

if (GPR[rs]79..64 = GPR[rt]79..64) then
 GPR[rd]79..64 ← 116

else
 GPR[rd]79..64 ← 016

endif

if (GPR[rs]95..80 = GPR[rt]95..80) then
 GPR[rd]95..80 ← 116

else
 GPR[rd]95..80 ← 016

endif

if (GPR[rs]111..96 = GPR[rt]111..96) then
 GPR[rd]111..96 ← 116

else
 GPR[rd]111..96 ← 016

endif

if (GPR[rs]127..112 = GPR[rt]127..112) then
 GPR[rd]127..112 ← 116

else
 GPR[rd]127..112 ← 016

endif

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd 016 116 016 116 016 116 016 116

rt B7 B6 B5 B4 B3 B2 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 = = = = = = = =

 False True False True False True False True

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-54

PCEQW PCEQWParallel Compare for Equal Word

MMI
011100

MMI1
101000rt rd PCEQW

00010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PCEQW rd, rs, rt

Purpose: To record the result of 4 equality comparisons in parallel.

Description: rd ← (rs = rt)

The four signed word values in GPR rs are compared to the corresponding four signed
word values in GPR rt, in parallel. The results of the comparison are placed into GPR rd
as follows:

If the signed word value in GPR rs is equal to the corresponding signed word value in GPR
rt, then the corresponding word in GPR rd is set to 0xFFFFFFFF otherwise it is set to
0x00000000.

This instruction operates on 128-bit registers.

Operation:
if (GPR[rs]31..0 = GPR[rt]31..0) then
 GPR[rd]31..0 ← 132

else
 GPR[rd]31..0 ← 032

endif

if (GPR[rs]63..32 = GPR[rt]63..32) then
 GPR[rd]63..32 ← 132

else
 GPR[rd]63..32 ← 032

endif

if (GPR[rs]95..64 = GPR[rt]95..64) then
 GPR[rd]95..64 ← 132

else
 GPR[rd]95..64 ← 032

endif

if (GPR[rs]127..96 = GPR[rt]127..96) then
 GPR[rd]127..96 ← 132

else
 GPR[rd]127..96 ← 032

endif

Appendix B C790-Specific Instruction Set Details

B-55

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rd 032 132 032 132

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

 = = = =

 False True False True

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-56

PCGTB PCGTBParallel Compare for Greater Than Byte

MMI
011100

MMI0
001000rt rd PCGTB

01010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PCGTB rd, rs, rt

Purpose: To record the result of 16 greater-than comparisons in parallel.

Description: rd ← (rs > rt)

The sixteen signed byte values in GPR rs are compared to the corresponding sixteen
signed byte values in GPR rt in parallel. The results of the comparison are placed into
GPR rd as follows:

If the signed byte value in GPR rs is greater than the corresponding signed byte value in
GPR rt, then the corresponding byte in GPR rd is set to 0xFF otherwise it is set to 0x00.

This instruction operates on 128-bit registers.

Operation:
if (GPR[rs]7..0 > GPR[rt]7..0) then
 GPR[rd]7..0 ← 18

else
 GPR[rd]7..0 ← 08

endif

if (GPR[rs]15..8 > GPR[rt]15..8) then
 GPR[rd]15..8 ← 18

else
 GPR[rd]15..8 ← 08

endif

if (GPR[rs]23..16 > GPR[rt]23..16) then
 GPR[rd]23..16 ← 18

else
 GPR[rd]23..16 ← 08

endif

if (GPR[rs]31..24 > GPR[rt]31..24) then
 GPR[rd]31..24 ← 18

else
 GPR[rd]31..24 ← 08

endif

Appendix B C790-Specific Instruction Set Details

B-57

if (GPR[rs]39..32 > GPR[rt]39..32) then
 GPR[rd]39..32 ← 18

else
 GPR[rd]39..32 ← 08

endif

if (GPR[rs]47..40 > GPR[rt]47..40) then
 GPR[rd]47..40 ← 18

else
 GPR[rd]47..40 ← 08

endif

if (GPR[rs]55..48 > GPR[rt]55..48) then
 GPR[rd]55..48 ← 18

else
 GPR[rd]55..48 ← 08

endif

if (GPR[rs]63..56 > GPR[rt]63..56) then
 GPR[rd]63..56 ← 18

else
 GPR[rd]63..56 ← 08

endif

if (GPR[rs]71..64 > GPR[rt]71..64) then
 GPR[rd]71..64 ← 18

else
 GPR[rd]71..64 ← 08

endif

if (GPR[rs]79..72 > GPR[rt]79..72) then
 GPR[rd]79..72 ← 18

else
 GPR[rd]79..72 ← 08

endif

if (GPR[rs]87..80 > GPR[rt]87..80) then
 GPR[rd]87..80 ← 18

else
 GPR[rd]87..80 ← 08

endif

if (GPR[rs]95..88 > GPR[rt]95..88) then
 GPR[rd]95..88 ← 18

else
 GPR[rd]95..88 ← 08

endif

Appendix B C790-Specific Instruction Set Details

B-58

if (GPR[rs]103..96 > GPR[rt]103..96) then
 GPR[rd]103..96 ← 18

else
 GPR[rd]103..96 ← 08

endif

if (GPR[rs]111..104 > GPR[rt]111..104) then
 GPR[rd]111..104 ← 18

else
 GPR[rd]111..104 ← 08

endif

if (GPR[rs]119..112 > GPR[rt]119..112) then
 GPR[rd]119..112 ← 18

else
 GPR[rd]119..112 ← 08

endif

if (GPR[rs]127..120 > GPR[rt]127..120) then
 GPR[rd]127..120 ← 18

else
 GPR[rd]127..120 ← 08

endif

rs A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

rt B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

> > > > > > > > > > > > > > > >

rd 18 08 08 08 08 18 08 08 18 08 08 08 08 18 08 08

 True False False False False True False False True False False False False True False False

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-59

PCGTH PCGTHParallel Compare for Greater Than Halfword

MMI
011100

MMI0
001000rt rd PCGTH

00110rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PCGTH rd, rs, rt

Purpose: To record the results of 8 greater-than comparisons in parallel.

Description: rd ← (rs > rt)

The eight signed halfword values in GPR rs are compared to the corresponding eight
signed halfword values in GPR rt in parallel. The results of the comparison are placed into
GPR rd as follows:

If the signed halfword value in GPR rs is greater than the corresponding signed halfword
value in GPR rt, then the corresponding halfword in GPR rd is set to 0xFFFF otherwise it
is set to 0x0000.

This instruction operates on 128-bit registers.

Operation:
if (GPR[rs]15..0 > GPR[rt]15..0) then
 GPR[rd]15..0 ← 116

else
 GPR[rd]15..0 ← 016

endif

if (GPR[rs]31..16 > GPR[rt]31..16) then
 GPR[rd]31..16 ← 116

else
 GPR[rd]31..16 ← 016

endif

if (GPR[rs]47..32 > GPR[rt]47..32) then
 GPR[rd]47..32 ← 116

else
 GPR[rd]47..32 ← 016

endif

if (GPR[rs]63..48 > GPR[rt]63..48) then
 GPR[rd]63..48 ← 116

else
 GPR[rd]63..48 ← 016

endif

Appendix B C790-Specific Instruction Set Details

B-60

if (GPR[rs]79..64 > GPR[rt]79..64) then
 GPR[rd]79..64 ← 116

else
 GPR[rd]79..64 ← 016

endif

if (GPR[rs]95..80 > GPR[rt]95..80) then
 GPR[rd]95..80 ← 116

else
 GPR[rd]95..80 ← 016

endif

if (GPR[rs]111..96 > GPR[rt]111..96) then
 GPR[rd]111..96 ← 116

else
 GPR[rd]111..96 ← 016

endif

if (GPR[rs]127..112 > GPR[rt]127..112) then
 GPR[rd]127..112 ← 116

else
 GPR[rd]127..112 ← 016

endif

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd 116 016 016 016 116 016 016 016

rt B7 B6 B5 B4 B3 B2 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 > > > > > > > >

 True False False False True False False False

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-61

PCGTW PCGTWParallel Compare for Greater Than Word

MMI
011100

MMI0
001000rt rd PCGTW

00010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PCGTW rd, rs, rt

Purpose: To record the results of 4 greater-than comparisons in parallel.

Description: rd ← (rs > rt)

The four signed word values in GPR rs are compared to the corresponding four signed
word values in GPR rt in parallel. The results of the comparison are placed into GPR rd as
follows:

If the signed word value in GPR rs is greater than the corresponding signed word value in
GPR rt, then the corresponding word in GPR rd is set 0xFFFFFFFF otherwise it is set to
0x00000000.

This instruction operates on 128-bit registers.

Operation:
if (GPR[rs]31..0 > GPR[rt]31..0) then
 GPR[rd]31..0 ← 132

else
 GPR[rd]31..0 ← 032

endif

if (GPR[rs]63..32 > GPR[rt]63..32) then
 GPR[rd]63..32 ← 132

else
 GPR[rd]63..32 ← 032

endif

if (GPR[rs]95..64 > GPR[rt]95..64) then
 GPR[rd]95..64 ← 132

else
 GPR[rd]95..64 ← 032

endif

if (GPR[rs]127..96 > GPR[rt]127..96) then
 GPR[rd]127..96 ← 132

else
 GPR[rd]127..96 ← 032

endif

Appendix B C790-Specific Instruction Set Details

B-62

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rd 032 132 032 132

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

 > > > >

 False True False True

Exception:

None

Appendix B C790-Specific Instruction Set Details

B-63

PCPYH PCPYHParallel Copy Halfword

MMI
011100

MMI3
101001rt rd PCPYH

11011
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PCPYH rd, rt

Purpose: To copy halfword.

Description: rd ← copy (rt)

The contents of the low-order halfword of the two doublewords in GPR rt are copied to
each of the halfwords of the two doublewords in GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← GPR[rt]15..0

GPR[rd]31..16 ← GPR[rt]15..0

GPR[rd]47..32 ← GPR[rt]15..0

GPR[rd]63..48 ← GPR[rt]15..0

GPR[rd]79..64 ← GPR[rt]79..64

GPR[rd]95..80 ← GPR[rt]79..64

GPR[rd]111..96 ← GPR[rt]79..64

GPR[rd]127..112 ← GPR[rt]79..64

rt A1 A0

rd A1 A1 A1 A1 A0 A0 A0 A0

127 80 79 64 63 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-64

PCPYLD PCPYLDParallel Copy Lower Doubleword

MMI
011100

MMI2
001001rt rd PCPYLD

01110rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PCPYLD rd, rs, rt

Purpose: To copy doubleword.

Description: rd ← copy (rs, rt)

The contents of the low-order doubleword in GPR rs are combined with the contents of the
low-order doubleword in GPR rt. The quadword result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]63..0 ← GPR[rt]63..0

GPR[rd]127..64 ← GPR[rs]63..0

rs A0

rd A0 B0

rt B0

127 64 63 0

127 64 63 0

127 64 63 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-65

PCPYUD PCPYUDParallel Copy Upper Doubleword

MMI
011100

MMI3
101001rt rd PCPYUD

01110rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PCPYUD rd, rs, rt

Purpose: To copy doubleword.

Description: rd ← copy (rs, rt)

The contents of the high-order doubleword in GPR rs are combined with the contents of
the high-order doubleword in GPR rt. The quadword result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation
GPR[rd]63..0 ← GPR[rs]127..64

GPR[rd]127..64 ← GPR[rt]127..64

rs A0

rd B0 A0

rt B0

127 64 63 0

127 64 63 0

127 64 63 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-66

PDIVBW PDIVBWParallel Divide Broadcast Word

MMI
011100

MMI2
001001rt PDIVBW

11101rs 0
00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PDIVBW rs, rt

Purpose: To divide 4 32-bit signed integers by a 16-bit signed integer in parallel.

Description: (LO, HI) ← rs / rt

The four signed words in GPR rs are divided by the low-order signed halfword in GPR rt,
in parallel. The four 32-bit quotients are placed into special register LO. The four 16-bit
remainders are placed into special register HI.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result value is undefined.

Operation:
q0 ← GPR[rs]31..0 div GPR[rt]15..0

r0 ← GPR[rs]31..0 mod GPR[rt]15..0

q1 ← GPR[rs]63..32 div GPR[rt]15..0

r1 ← GPR[rs]63..32 mod GPR[rt]15..0

q2 ← GPR[rs]95..64 div GPR[rt]15..0

r2 ← GPR[rs]95..64 mod GPR[rt]15..0

q3 ← GPR[rs]127..96 div GPR[rt]15..0

r3 ← GPR[rs]127..96 mod GPR[rt]15..0

LO31..0 ← q031..0

HI31..0 ← (r015)16 || r015..0

LO63..32 ← q131..0

HI63..32 ← (r115)16 || r115..0

LO95..64 ← q231..0

HI95..64 ← (r215)16 || r215..0

LO127..96 ← q331..0

HI127..96 ← (r315)16 || r315..0

Appendix B C790-Specific Instruction Set Details

B-67

127 96 95 64 63 32 31 0

rt B0
127 16 15 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

 ÷ ÷ ÷ ÷
rs A3 A2 A1 A0

LO A3 div B0 A2 div B0 A1 div B0 A0 div B0

HI sign ext (A3 mod B0) sign ext (A2 mod B0) sign ext (A1 mod B0) sign ext (A0 mod B0)

Supplementary explanation:

When 0x80000000 (-2147483648), the most negative value, is divided by 0xFFFF (-1), the
operation will results in an overflow. However, overflow exception doesn’t occur and the
operation results in the following:

Quotient is 0x80000000 (-2147483648), and remainder is 0x00000000 (0).

Exceptions:

None

Programming Notes:

In the C790 the integer divide operation proceeds asynchronously and allows other CPU
instructions to execute before it is retired. An attempt to read LO or HI before the results
are written will cause an interlock until the results are ready. Asynchronous execution
does not affect the program result, but offers an opportunity for performance improvement
by scheduling the divide so that other instructions can execute in parallel.

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow
conditions should be detected and some action taken, then the divide instruction is
typically followed by additional instructions to check for a zero divisor and / or for overflow.
If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within
the program itself or more typically, the system software; one possibility is to take a
BREAK exception with a code field value to signal the problem to the system software.

As an example, the C programming language in a UNIX environment expects division by
zero to either terminate the program or execute a program-specified signal handler. C
does not expect overflow to cause any exceptional condition. If the C compiler uses a divide
instruction, it also emits code to test for a zero divisor and execute a BREAK instruction to
inform the operating system if one is detected.

Appendix B C790-Specific Instruction Set Details

B-68

PDIVUW PDIVUWParallel Divide Unsigned Word

MMI
011100

MMI3
101001rt PDIVUW

01101rs 0
00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PDIVUW rs, rt

Purpose: To divide 2 pairs of 32-bit unsigned integers in parallel.

Description: (LO, HI) ← rs / rt

The low-order unsigned word of the two doublewords in GPR rs are divided by the low-
order unsigned word of the two doublewords in GPR rt in parallel. The two 32 bit
quotients are placed into special register LO. The two 32-bit remainders are placed into
special register HI.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

If neither GPR rt nor GPR rs contain a zero-extended 32-bit value (bits 127..96 and
63..32 equal zero), the result of the operation will be undefined.

If the divisor in GPR rt is zero, the result will be undefined.

Operation:
if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif

q0 ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)
r0 ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)
q1 ← (0 || GPR[rs]95..64) div (0 || GPR[rt]95..64)
r1 ← (0 || GPR[rs]95..64) mod (0 || GPR[rt]95..64)
LO63..0 ← (q0 31)32 || q031..0

HI63..0 ← (r0 31)32 || r031..0

LO127..64 ← (q1 31)32 || q131..0

HI127..64 ← (r1 31)32 || r131..0

rs A1 A0
127 96 95 64 63 32 31 0

rt B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

HI sign ext (0 || A1) mod (0 || B1) sign ext (0 || A0) mod (0 || B0)

LO sign ext (0 || A1) div (0 || B1) sign ext (0 || A0) div (0 || B0)

 ÷ ÷

Appendix B C790-Specific Instruction Set Details

B-69

Exceptions:

None

Programming Notes:

See the Programming Notes for the PDIVBW instruction.

Appendix B C790-Specific Instruction Set Details

B-70

PDIVW PDIVWParallel Divide Word

MMI
011100

MMI2
001001rt PDIVW

01101rs 0
00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PDIVW rs, rt

Purpose: To divide 2 pairs of 32-bit signed integers in parallel.

Description: (LO, HI) ← rs / rt

The low-order signed word of the two doublewords in GPR rs are divided by the low-order
signed word of the two doublewords in GPR rt in parallel. The two 32 bit quotients are
placed into special register LO. The two 32-bit remainders are placed into special register
HI.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

If neither GPR rt nor GPR rs contain a sign-extended 32-bit value (bits 127..95 equal and
63..31 equal), the result of the operation will be undefined.

If the divisor in GPR rt is zero, the result will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif

q0 ← GPR[rs]31..0 div GPR[rt]31..0

r0 ← GPR[rs]31..0 mod GPR[rt]31..0

q1 ← GPR[rs]95..64 div GPR[rt]95..64

r1 ← GPR[rs]95..64 mod GPR[rt]95..64

LO63..0 ← (q0 31)32 || q031..0

HI63..0 ← (r0 31)32 || r031..0

LO127..64 ← (q1 31)32 || q131..0

HI 127..64 ← (r1 31)32 || r131..0

rs A1 A0
127 96 95 64 63 32 31 0

rt B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

HI sign ext A1 mod B1 sign ext A0 mod B0

LO sign ext A1 div B1 sign ext A0 div B0

 ÷ ÷

Appendix B C790-Specific Instruction Set Details

B-71

Supplementary explanation:

When 0x80000000 (-2147483648), the most negative value, is divided by 0xFFFFFFFF (-1),
the operation results in an overflow. However, overflow exception doesn’t occur; the
operation results in the followings:

Quotient (q) is 0x80000000 (-2147483648), and remainder (r) is 0x00000000(0).

Exceptions:

None

Programming Notes:

See the Programming Notes for the PDIVBW instruction.

Appendix B C790-Specific Instruction Set Details

B-72

PEXCH PEXCHParallel Exchange Center Halfword

MMI
011100

MMI3
101001rt rd PEXCH

11010
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXCH rd, rt

Purpose: To exchange halfwords.

Description: rd ← exchange (rt)

The two central halfwords of the high-order doubleword in GPR rt are exchanged and the
two central halfwords of the low-order doubleword in GPR rt are exchanged. The results
are copied to GPR rd while other halfwords are copied directly to the corresponding
halfwords.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← GPR[rt]15..0

GPR[rd]31..16 ← GPR[rt]47..32

GPR[rd]47..32 ← GPR[rt]31..16

GPR[rd]63..48 ← GPR[rt]63..48

GPR[rd]79..64 ← GPR[rt]79..64

GPR[rd]95..80 ← GPR[rt]111..96

GPR[rd]111..96 ← GPR[rt]95..80

GPR[rd]127..112 ← GPR[rt]127..112

rt A7 A6 A5 A4 A3 A2 A1 A0

rd A7 A5 A6 A4 A3 A1 A2 A0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-73

PEXCW PEXCWParallel Exchange Center Word

MMI
011100

MMI3
101001rt rd PEXCW

11110
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXCW rd, rt

Purpose: To exchange words.

Description: rd ← exchange (rt)

The two central words in GPR rt are exchanged. The results are copied to GPR rd while
other words are copied directly to the corresponding words.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]31..0 ← GPR[rt]31..0

GPR[rd]63..32 ← GPR[rt]95..64

GPR[rd]95..64 ← GPR[rt]63..32

GPR[rd]127..96 ← GPR[rt]127..96

rt A3 A2 A1 A0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd A3 A1 A2 A0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-74

PEXEH PEXEHParallel Exchange Even Halfword

MMI
011100

MMI2
001001rt rd PEXEH

11010
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXEH rd, rt

Purpose: To exchange halfwords.

Description: rd ← exchange (rt)

The two low-order halfwords of the two words of the high-order doubleword in GPR rt are
exchanged and the two low-order halfwords of the two words of the low-order doubleword
in GPR rt are exchanged. The results are copied to GPR rd while other halfwords are
copied directly to the corresponding halfwords.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← GPR[rt]47..32

GPR[rd]31..16 ← GPR[rt]31..16

GPR[rd]47..32 ← GPR[rt]15..0

GPR[rd]63..48 ← GPR[rt]63..48

GPR[rd]79..64 ← GPR[rt]111..96

GPR[rd]95..80 ← GPR[rt]95..80

GPR[rd]111..96 ← GPR[rt]79..64

GPR[rd]127..112 ← GPR[rt]127..112

rt A7 A6 A5 A4 A3 A2 A1 A0

rd A7 A4 A5 A6 A3 A0 A1 A2

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-75

PEXEW PEXEWParallel Exchange Even Word

MMI
011100

MMI2
001001rt rd PEXEW

11110
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXEW rd, rt

Purpose: To exchange word.

Description: rd ← exchange (rt)

The two low-order words of the two doublewords in GPR rt are exchanged. The results are
copied to GPR rd while other words are copied directly to the corresponding words.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]31..0 ← GPR[rt]95..64

GPR[rd]63..32 ← GPR[rt]63..32

GPR[rd]95..64 ← GPR[rt]31..0

GPR[rd]127..96 ← GPR[rt]127..96

rt A3 A2 A1 A0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd A3 A0 A1 A2

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-76

PEXT5 PEXT5Parallel Extend from 5-bits

MMI
011100

MMI0
001000rt rd PEXT5

11110
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXT5 rd, rt

Purpose: To extend bytes from 5-bits.

Description: rd ← extend (rt)

The four low-order 16-bits (1, 5, 5, 5 bit) of the four words in GPR rt are extended to four
32-bits (8, 8, 8, 8 bit). The quadword result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation
GPR[rd]2..0 ← 03

GPR[rd]7..3 ← GPR[rt]4..0

GPR[rd]10..8 ← 03

GPR[rd]15..11 ← GPR[rt]9..5

GPR[rd]18..16 ← 03

GPR[rd]23..19 ← GPR[rt]14..10

GPR[rd]30..24 ← 07

GPR[rd]31 ← GPR[rt]15

GPR[rd]34..32 ← 03

GPR[rd]39..35 ← GPR[rt]36..32

GPR[rd]42..40 ← 03

GPR[rd]47..43 ← GPR[rt]41..37

GPR[rd]50..48 ← 03

GPR[rd]55..51 ← GPR[rt]46..42

GPR[rd]62..56 ← 07

GPR[rd]63 ← GPR[rt]47

GPR[rd]66..64 ← 03

GPR[rd]71..67 ← GPR[rt]68..64

GPR[rd]74..72 ← 03

GPR[rd]79..75 ← GPR[rt]73..69

GPR[rd]82..80 ← 03

GPR[rd]87..83 ← GPR[rt]78..74

GPR[rd]94..88 ← 07

GPR[rd]95 ← GPR[rt]79

GPR[rd]98..96 ← 03

GPR[rd]103..99 ← GPR[rt]100..96

GPR[rd]106..104 ← 03

GPR[rd]111..107 ← GPR[rt]105..101

GPR[rd]114..112 ← 03

GPR[rd]119..115 ← GPR[rt]110..106

GPR[rd]126..120 ← 07

GPR[rd]127 ← GPR[rt]111

Appendix B C790-Specific Instruction Set Details

B-77

 127 96 95 64 63 32 31 0

 [Overview]

 [Detail of word region (31..0)]

 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Zoom

rd

rt

 31 30 24 23 19 18 16 15 11 10 8 7 3 2 0

 31 16 15 14 10 9 5 4 0

rd A3 07 A2 03 A1 03 A0 03

rt A3 A2 A1 A0

5bit 5bit 5bit1bit

8bit8bit8bit8bit

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-78

PEXTLB PEXTLBParallel Extend Lower from Byte

MMI
011100

MMI0
001000rt rd PEXTLB

11010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXTLB rd, rs, rt

Purpose: To extend halfwords from bytes.

Description: rd ← extend (rs, rt)

The contents of the low-order doubleword in GPR rs are combined with the contents of the
low-order doubleword in GPR rt in a byte wide Interleaved operation. The quadword
result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation
GPR[rd]7..0 ← GPR[rt]7..0

GPR[rd]15..8 ← GPR[rs]7..0

GPR[rd]23..16 ← GPR[rt]15..8

GPR[rd]31..24 ← GPR[rs]15..8

GPR[rd]39..32 ← GPR[rt]23..16

GPR[rd]47..40 ← GPR[rs]23..16

GPR[rd]55..48 ← GPR[rt]31..24

GPR[rd]63..56 ← GPR[rs]31..24

GPR[rd]71..64 ← GPR[rt]39..32

GPR[rd]79..72 ← GPR[rs]39..32

GPR[rd]87..80 ← GPR[rt]47..40

GPR[rd]95..88 ← GPR[rs]47..40

GPR[rd]103..96 ← GPR[rt]55..48

GPR[rd]111..104 ← GPR[rs]55..48

GPR[rd]119..112 ← GPR[rt]63..56

GPR[rd]127..120 ← GPR[rs]63..56

rd A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 A0 B0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rt B7 B6 B5 B4 B3 B2 B1 B0

127 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-79

PEXTLH PEXTLHParallel Extend Lower from Halfword

MMI
011100

MMI0
001000rt rd PEXTLH

10110rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXTLH rd, rs, rt

Purpose: To extend words from halfwords.

Description: rd ← extend (rs, rt)

The contents of the low-order doubleword in GPR rs are combined with the contents of the
low-order doubleword in GPR rt in a halfword wide Interleaved operation. The quadword
result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation
GPR[rd]15..0 ← GPR[rt]15..0

GPR[rd]31..16 ← GPR[rs]15.. 0

GPR[rd]47..32 ← GPR[rt]31..16

GPR[rd]63..48 ← GPR[rs]31..16

GPR[rd]79..64 ← GPR[rt]47..32

GPR[rd]95..80 ← GPR[rs]47..32

GPR[rd]111..96 ← GPR[rt]63..48

GPR[rd]127..112 ← GPR[rs]63..48

127 64 63 48 47 32 31 16 15 0

rs A3 A2 A1 A0

rd A3 B3 A2 B2 A1 B1 A0 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rt B3 B2 B1 B0
127 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-80

PEXTLW PEXTLWParallel Extend Lower from Word

MMI
011100

MMI0
001000rt rd PEXTLW

10010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXTLW rd, rs, rt

Purpose: To extend doublewords from words.

Description: rd ← extend (rs, rt)

The contents of the low-order doubleword in GPR rs are combined with the contents of the
low-order doubleword in GPR rt in a word wide Interleaved operation. The quadword
result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]31..0 ← GPR[rt]31..0

GPR[rd]63..32 ← GPR[rs]31..0

GPR[rd]95..64 ← GPR[rt]63..32

GPR[rd]127..96 ← GPR[rs]63..32

127 64 63 32 31 0

rs A1 A0

rd A1 B1 A0 B0
127 96 95 64 63 32 31 0

127 64 63 32 31 0

rt B1 B0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-81

PEXTUB PEXTUBParallel Extend Upper from Byte

MMI
011100

MMI1
101000rt rd PEXTUB

11010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXTUB rd, rs, rt

Purpose: To extend halfwords from bytes.

Description: rd ← extend (rs, rt)

The contents of the high-order doubleword in GPR rs are combined with the contents of
the high-order doubleword in GPR rt in a byte wide Interleaved operation. The quadword
result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]7..0 ← GPR[rt]71..64

GPR[rd]15..8 ← GPR[rs]71..64

GPR[rd]23..16 ← GPR[rt]79..72

GPR[rd]31..24 ← GPR[rs]79..72

GPR[rd]39..32 ← GPR[rt]87..80

GPR[rd]47..40 ← GPR[rs]87..80

GPR[rd]55..48 ← GPR[rt]95..88

GPR[rd]63..56 ← GPR[rs]95..88

GPR[rd]71..64 ← GPR[rt]103..96

GPR[rd]79..72 ← GPR[rs]103..96

GPR[rd]87..80 ← GPR[rt]111..104

GPR[rd]95..88 ← GPR[rs]111..104

GPR[rd]103..96 ← GPR[rt]119..112

GPR[rd]111..104 ← GPR[rs]119..112

GPR[rd]119..112 ← GPR[rt]127..120

GPR[rd]127..120 ← GPR[rs]127..120

rs A7 A6 A5 A4 A3 A2 A1 A0

rd A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 A0 B0

rt B7 B6 B5 B4 B3 B2 B1 B0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-82

PEXTUH PEXTUHParallel Extend Upper from Halfword

MMI
011100

MMI1
101000rt rd PEXTUH

10110rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXTUH rd, rs, rt

Purpose: To extend words from halfwords.

Description: rd ← extend (rs, rt)

The contents of the high-order doubleword in GPR rs are combined with the contents of
the high-order doubleword in GPR rt in a halfword wide Interleaved operation. The
quadword result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← GPR[rt]79..64

GPR[rd]31..16 ← GPR[rs]79..64

GPR[rd]47..32 ← GPR[rt]95..80

GPR[rd]63..48 ← GPR[rs]95..80

GPR[rd]79..64 ← GPR[rt]111..96

GPR[rd]95..80 ← GPR[rs]111..96

GPR[rd]111..96 ← GPR[rt]127..112

GPR[rd]127..112 ← GPR[rs]127..112

rd A3 B3 A2 B2 A1 B1 A0 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A3 A2 A1 A0

rt B3 B2 B1 B0

127 112 111 96 95 80 79 64 63 0

127 112 111 96 95 80 79 64 63 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-83

PEXTUW PEXTUWParallel Extend Upper from Word

MMI
011100

MMI1
101000rt rd PEXTUW

10010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PEXTUW rd, rs, rt

Purpose: To extend doublewords from words.

Description: rd ← extend (rs, rt)

The contents of the high-order doubleword in GPR rs are combined with the contents of
the high-order doubleword in GPR rt in a word wide Interleaved operation. The quadword
result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]31..0 ← GPR[rt]95..64

GPR[rd]63..32 ← GPR[rs]95..64

GPR[rd]95..64 ← GPR[rt]127..96

GPR[rd]127..96 ← GPR[rs]127..96

127 96 95 64 63 0

rs A1 A0

rd A1 B1 A0 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 0

rt B1 B0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-84

PHMADH PHMADHParallel Horizontal Multiply-Add Halfword

MMI
011100

MMI2
001001rt rd PHMADH

10001rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PHMADH rd, rs, rt

Purpose: To multiply 8 pairs of 16-bit signed integers and horizontally add.

Description: (rd, HI, LO) ← rs × rt + rs × rt

The eight signed halfwords in GPR rs are multiplied by the eight signed halfwords in GPR
rt in parallel. The four word multiply results are added to the other four word multiply
results, and the four word results are placed into the corresponding words in special
registers HI, LO and GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

None

Operation:
prod0 ← GPR[rs]31..16 × GPR[rt]31..16 + GPR[rs]15..0 × GPR[rt]15..0

prod1 ← GPR[rs]63..48 × GPR[rt]63..48 + GPR[rs]47..32 × GPR[rt]47..32

prod2 ← GPR[rs]95..80 × GPR[rt]95..80 + GPR[rs]79..64 × GPR[rt]79..64

prod3 ← GPR[rs]127..112 × GPR[rt]127..112 + GPR[rs]111..96 × GPR[rt]111..96

LO 31..0 ← prod031..0

LO 63..32 ← Undefined
HI 31..0 ← prod131..0

HI 63..32 ← Undefined
LO 95..64 ← prod231..0

LO 127..96 ← Undefined
HI 95..64 ← prod331..0

HI 127..96 ← Undefined
GPR[rd]31..0 ← prod031..0

GPR[rd]63..32 ← prod131..0

GPR[rd]95..64 ← prod231..0

GPR[rd]127..96 ← prod331..0

Appendix B C790-Specific Instruction Set Details

B-85

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0
× × × × × × × ×

rt B7 B6 B5 B4 B3 B2 B1 B0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rd A7×B7 + A6×B6 A5×B5 + A4×B4 A3×B3 + A2×B2 A1×B1 + A0×B0

+ + + +

HI Undefined A7×B7 + A6×B6 Undefined A3×B3 + A2×B2

LO Undefined A5×B5 + A4×B4 Undefined A1×B1 + A0×B0

Exceptions:

None

Programming Notes:

In the C790, the integer multiply operation allows other CPU instructions to execute out-
of-order. An attempt to read LO or HI registers before the results are written will cause
an interlock until the results are ready. Asynchronous execution does not affect the
program result, but offers an opportunity for performance improvement by scheduling the
multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Appendix B C790-Specific Instruction Set Details

B-86

PHMSBH PHMSBHParallel Horizontal Multiply-Subtract Halfword

MMI
011100

MMI2
001001rt rd PHMSBH

10101rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PHMSBH rd, rs, rt

Purpose: To multiply 8 pairs of 16-bit signed integers and horizontally subtract.

Description: (rd, HI, LO) ← rs × rt − rs × rt

The eight signed halfwords in GPR rs are multiplied by the eight signed halfwords in GPR
rt in parallel. The four word multiply results are subtracted from the other four word
multiply results, and the four word results are placed into the corresponding words in
special registers HI, LO and GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

None

Operation:
prod0 ← GPR[rs]31..16 × GPR[rt]31..16 − GPR[rs]15..0 × GPR[rt]15..0

prod1 ← GPR[rs]63..48 × GPR[rt]63..48 − GPR[rs]47..32 × GPR[rt]47..32

prod2 ← GPR[rs]95..80 × GPR[rt]95..80 − GPR[rs]79..64 × GPR[rt]79..64

prod3 ← GPR[rs]127..112 × GPR[rt]127..112 − GPR[rs]111..96 × GPR[rt]111..96

LO 31..0 ← prod031..0

LO 63..32 ← Undefined
HI 31..0 ← prod131..0

HI 63..32 ← Undefined
LO 95..64 ← prod231..0

LO 127..96 ← Undefined
HI 95..64 ← prod331..0

HI 127..96 ← Undefined
GPR[rd]31..0 ← prod031..0

GPR[rd]63..32 ← prod131..0

GPR[rd]95..64 ← prod231..0

GPR[rd]127..96 ← prod331..0

Appendix B C790-Specific Instruction Set Details

B-87

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0
× × × × × × × ×

rt B7 B6 B5 B4 B3 B2 B1 B0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rd A7×B7 − A6×B6 A5×B5 − A4×B4 A3×B3 − A2×B2 A1×B1 − A0×B0

− − − −

HI Undefined A7×B7 − A6×B6 Undefined A3×B3 − A2×B2

LO Undefined A5×B5 − A4×B4 Undefined A1×B1 − A0×B0

Exceptions:

None

Programming Notes:

In the C790, the integer multiply operation allows other CPU instructions to execute out-
of-order. An attempt to read LO or HI registers before the results are written will wait
(interlock) until the results are ready. Asynchronous execution does not affect the program
result, but offers an opportunity for performance improvement by scheduling the multiply
so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Appendix B C790-Specific Instruction Set Details

B-88

PINTEH PINTEHParallel Interleave Even Halfword

MMI
011100

MMI3
101001rt rd PINTEH

01010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PINTEH rd, rs, rt

Purpose: To combine halfwords in a halfword wide interleaved operation.

Description: rd ← interleave (rs, rt)

The low-order halfword of the four words in GPR rs are combined with the low-order
halfword of the four words in GPR rt in a halfword wide Interleaved operation. The
quadword result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← GPR[rt]15..0

GPR[rd]31..16 ← GPR[rs]15..0

GPR[rd]47..32 ← GPR[rt]47..32

GPR[rd]63..48 ← GPR[rs]47..32

GPR[rd]79..64 ← GPR[rt]79..64

GPR[rd]95..80 ← GPR[rs]79..64

GPR[rd]111..96 ← GPR[rt]111..96

GPR[rd]127..112 ← GPR[rs]111..96

rs A3 A2 A1 A0

rd A3 B3 A2 B2 A1 B1 A0 B0

rt B3 B2 B1 B0

 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-89

PINTH PINTHParallel Interleave Halfword

MMI
011100

MMI2
001001rt rd PINTH

01010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PINTH rd, rs, rt

Purpose: To combine doublewords in a halfword wide interleaved operation.

Description: rd ← interleave (rs, rt)

The contents of the high-order doubleword in GPR rs are combined with the contents of
the low-order doubleword in GPR rt in a halfword wide Interleaved operation. The
quadword result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← GPR[rt]15..0

GPR[rd]31..16 ← GPR[rs]79..64

GPR[rd]47..32 ← GPR[rt]31..16

GPR[rd]63..48 ← GPR[rs]95..80

GPR[rd]79..64 ← GPR[rt]47..32

GPR[rd]95..80 ← GPR[rs]111..96

GPR[rd]111..96 ← GPR[rt]63..48

GPR[rd]127..112 ← GPR[rs]127..112

rd A3 B3 A2 B2 A1 B1 A0 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A3 A2 A1 A0
127 112 111 96 95 80 79 64 63 0

rt B3 B2 B1 B0
127 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-90

PLZCW PLZCWParallel Leading Zero or one Count Word

MMI
011100

PLZCW
000100rd 0

00000rs 0
00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PLZCW rd, rs

Purpose: To count leading zero (s) or one (s) (2 parallel operations).

Description: rd ← LZC (rs) − 1

The number of leading zeros or ones of the two words in GPR rs are counted. The results
of the leading counts minus one are loaded in the corresponding words in GPR rd.

Operation:
GPR[rd]31..0 ← Leading zero or one count (GPR[rs]31..0) − 1
GPR[rd]63..32 ← Leading zero or one count (GPR[rs]63..32) − 1

 63 32 31 0

rs A1 A0

 63 32 31 0

rd LZC(A1) − 1 LZC(A0) − 1

Leading zero or one Count

Example :

 63 32 31 0

rs 0x000FFFFF 0xFF000000

 63 32 31 0

rd 0x0000000B 0x00000007

Leading zero Count Leading one Count

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-91

PMADDH PMADDHParallel Multiply-Add Halfword

MMI
011100

MMI2
001001rt rd PMADDH

10000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMADDH rd, rs, rt

Purpose: To multiply 8 pairs of 16-bit signed integers and accumulate, in parallel.

Description: (rd, HI, LO) ← (HI, LO) + rs × rt

The eight signed halfwords in GPR rs are multiplied by the eight signed halfwords in GPR
rt in parallel. The eight word multiply results are added to the corresponding words in
special registers HI and LO, and the word results are placed into the corresponding words
in special registers HI, LO and GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

None

Operation:
prod0 ← LO 31..0 + GPR[rs]15..0 × GPR[rt]15..0

prod1 ← LO 63..32 + GPR[rs]31..16 × GPR[rt]31..16

prod2 ← HI 31..0 + GPR[rs]47..32 × GPR[rt]47..32

prod3 ← HI 63..32 + GPR[rs]63..48 × GPR[rt]63..48

prod4 ← LO 95..64 + GPR[rs]79..64 × GPR[rt]79..64

prod5 ← LO 127..96 + GPR[rs]95..80 × GPR[rt]95..80

prod6 ← HI 95..64 + GPR[rs]111..96 × GPR[rt]111..96

prod7 ← HI 127..96 + GPR[rs]127..112 × GPR[rt]127..112

LO 31..0 ← prod031..0

LO 63..32 ← prod131..0

HI 31..0 ← prod231..0

HI 63..32 ← prod331..0

LO 95..64 ← prod431..0

LO 127..96 ← prod531..0

HI 95..64 ← prod631..0

HI 127..96 ← prod731..0

GPR[rd]31..0 ← prod031..0

GPR[rd]63..32 ← prod231..0

GPR[rd]95..64 ← prod431..0

GPR[rd]127..96 ← prod631..0

Appendix B C790-Specific Instruction Set Details

B-92

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0
× × × × × × × ×

rt B7 B6 B5 B4 B3 B2 B1 B0

127 96 95 64 63 32 31 0

HI C7 C6 C3 C2

LO C5 C4 C1 C0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

HI A7 × B7 + C7 A6 × B6 + C6 A3 × B3 + C3 A2 × B2 + C2

LO A5 × B5 + C5 A4 × B4 + C4 A1 × B1 + C1 A0 × B0 + C0

rd A6 × B6 + C6 A4 × B4 + C4 A2 × B2 + C2 A0 × B0 + C0

Exceptions:

None

Programming Notes:

In the C790, the integer multiply operation allow other CPU instructions to execute out-
of-order. An attempt to read LO or HI registers before the results are written will cause
an interlock until the results are ready. Asynchronous execution does not affect the
program result, but offers an opportunity for performance improvement by scheduling the
multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Appendix B C790-Specific Instruction Set Details

B-93

PMADDUW PMADDUWParallel Multiply-Add Unsigned Word

MMI
011100

MMI3
101001rt rd PMADDUW

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMADDUW rd, rs, rt

Purpose: To multiply 2 pairs of 32-bit unsigned integers and accumulate in parallel.

Description: (rd, HI, LO) ← (HI, LO) + rs × rt

The low-order unsigned word of the two doublewords in GPR rs are multiplied by the low-
order unsigned word of the two doublewords in GPR rt in parallel. The two 64-bit multiply
results are added to the contents of special registers HI and LO. The low-order word of the
two doubleword results are placed into special register LO, and the high-order word of the
two doubleword results are placed into special register HI. The two doubleword results are
placed into GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

If either GPR rt or GPR rs do not contain zero-extended 32-bit values (bits 127..96 and
63..32 equal zero) then the result of the equation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
prod0 ← (HI31..0 || LO31..0) + (0 || GPR[rs]31..0) × (0 || GPR[rt]31..0)
prod1 ← (HI95..64 || LO95..64) + (0 || GPR[rs]95..64) × (0 || GPR[rt]95..64)
LO63..0 ←(prod0 31)32 || prod031..0

HI63..0 ←(prod0 63)32 || prod063..32

LO127..64 ←(prod1 31)32 || prod131..0

HI127..64 ←(prod1 63)32 || prod163..32

GPR[rd]63..0 ←prod063..0

GPR[rd]127..64 ←prod163..0

Appendix B C790-Specific Instruction Set Details

B-94

rs A3 A2 A1 A0
127 96 95 64 63 32 31 0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd (0 || A2) × (0 || B2) + (C6 || C4) (0 || A0) × (0 || B0) + (C2 || C0)

HI C7 C6 C3 C2

LO C5 C4 C1 C0

HI sign ext ((0 || A2) × (0 || B2) + (C6 || C4))63..32 sign ext ((0 || A0) × (0 || B0) + (C2 || C0))63..32

LO sign ext ((0 || A2) × (0 || B2) + (C6 || C4))31..0 sign ext ((0 || A0) × (0 || B0) + (C2 || C0))31..0

127 96 95 64 63 32 31 0

127 64 63 0

127 96 95 64 63 32 31 0

 × ×

Exceptions:

None

Programming Notes:

See the Programming Notes for the PMADDH instruction.

Appendix B C790-Specific Instruction Set Details

B-95

PMADDW PMADDWParallel Multiply-Add Word

MMI
011100

MMI2
001001rt rd PMADDW

00000rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMADDW rd, rs, rt

Purpose: To multiply 2 pairs of 32-bit signed integers and accumulate in parallel.

Description: (rd, HI, LO) ← (HI, LO) + rs × rt

The low-order signed word of the two doublewords in GPR rs are multiplied by the low-
order signed word of the two doublewords in GPR rt in parallel. The two 64-bit multiply
results are added to the contents of special registers HI and LO. The low-order word of the
two doubleword results are placed into special register LO, and the high-order word of the
two doubleword results are placed into special register HI. The two doubleword results are
placed into GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 127..95 and
63..31 equal) then the result of the equation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
prod0 ← (HI31..0 || LO31..0) + GPR[rs]31..0 × GPR[rt]31..0

prod1 ← (HI95..64 || LO95..64) + GPR[rs]95..64 × GPR[rt]95..64

LO63..0 ← (prod0 31)32 || prod031..0

HI63..0 ← (prod0 63)32 || prod063..32

LO127..64 ← (prod1 31)32 || prod131..0

HI127..64 ← (prod1 63)32 || prod163..32

GPR[rd]63..0 ← prod063..0

GPR[rd]127..64 ← prod163..0

Appendix B C790-Specific Instruction Set Details

B-96

rs A3 A2 A1 A0
127 96 95 64 63 32 31 0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd A2 × B2 + (C6 || C4) A0 × B0 + (C2 || C0)

HI C7 C6 C3 C2

LO C5 C4 C1 C0

HI sign ext (A2 × B2 + (C6 || C4))63..32 sign ext (A0 × B0 + (C2 || C0))63..32

LO sign ext (A2 × B2 + (C6 || C4))31..0 sign ext (A0 × B0 + (C2 || C0))31..0

127 96 95 64 63 32 31 0

127 64 63 0

127 96 95 64 63 32 31 0

 × ×

Exceptions:

None

Programming Notes:

See the Programming Notes for the PMADDH instruction.

Appendix B C790-Specific Instruction Set Details

B-97

PMAXH PMAXHParallel Maximum Halfword

MMI
011100

MMI0
001000rt rd PMAXH

00111rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMAXH rd, rs, rt

Purpose: To select maximum 16-bit signed integers (8 parallel operations).

Description: rd ← max (rs, rt)

The eight signed halfword values in GPR rt are subtracted from the corresponding eight
signed halfword values in GPR rs in parallel. If the result of subtraction is larger than
zero, the corresponding signed halfword value in GPR rs is placed into the corresponding
halfword in GPR rd otherwise the corresponding signed halfword value in GPR rt is placed
into the corresponding halfword of the GPR rd.

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]15..0 − GPR[rt]15..0) > 0) then
 GPR[rd]15..0 ← GPR[rs]15..0

else
 GPR[rd]15..0 ← GPR[rt]15..0

endif

if ((GPR[rs]31..16 − GPR[rt]31..16) > 0) then
 GPR[rd]31..16 ← GPR[rs]31..16

else
 GPR[rd]31..16 ← GPR[rt]31..16

endif

if ((GPR[rs]47..32 − GPR[rt]47..32) > 0) then
 GPR[rd]47..32 ← GPR[rs]47..32

else
 GPR[rd]47..32 ← GPR[rt]47..32

endif

if ((GPR[rs]63..48 − GPR[rt]63..48) > 0) then
 GPR[rd]63..48 ← GPR[rs]63..48

else
 GPR[rd]63..48 ← GPR[rt]63..48

endif

if ((GPR[rs]79..64 − GPR[rt]79..64) > 0) then
 GPR[rd]79..64 ← GPR[rs]79..64

else
 GPR[rd]79..64 ← GPR[rt]79..64

endif

Appendix B C790-Specific Instruction Set Details

B-98

if ((GPR[rs]95..80 − GPR[rt]95..80) > 0) then
 GPR[rd]95..80 ← GPR[rs]95..80

else
 GPR[rd]95..80 ← GPR[rt]95..80

endif

if ((GPR[rs]111..96 − GPR[rt]111..96) > 0) then
 GPR[rd]111..96 ← GPR[rs]111..96

else
 GPR[rd]111..96 ← GPR[rt]111..96

endif

if ((GPR[rs]127..112 − GPR[rt]127..112) > 0) then
 GPR[rd]127..112 ← GPR[rs]127..112

else
 GPR[rd]127..112 ← GPR[rt]127..112

endif

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rt B7 B6 B5 B4 B3 B2 B1 B0

rd max (A7, B7) max (A6, B6) max (A5, B5) max (A4, B4) max (A3, B3) max (A2, B2) max (A1, B1) max (A0, B0)

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-99

PMAXW PMAXWParallel Maximum Word

MMI
011100

MMI0
001000rt rd PMAXW

00011rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMAXW rd, rs, rt

Purpose: To select maximum 32-bit signed integers (4 parallel operations).

Description: rd ← max (rs, rt)

The four signed word values in GPR rt are subtracted from the corresponding four signed
word values in GPR rs in parallel. If the result of subtraction is larger than zero, the
corresponding signed word value in GPR rs is placed into the corresponding word in GPR
rd otherwise the corresponding signed word value in GPR rt is placed into the
corresponding word of the GPR rd.

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]31..0 − GPR[rt]31..0) > 0) then
 GPR[rd]31..0 ← GPR[rs]31..0

else
 GPR[rd]31..0 ← GPR[rt]31..0

endif

if ((GPR[rs]63..32 − GPR[rt]63..32) > 0) then
 GPR[rd]63..32 ← GPR[rs]63..32

else
 GPR[rd]63..32 ← GPR[rt]63..32

endif

if ((GPR[rs]95..64 − GPR[rt]95..64) > 0) then
 GPR[rd]95..64 ← GPR[rs]95..64

else
 GPR[rd]95..64 ← GPR[rt]95..64

endif

if ((GPR[rs]127..96 − GPR[rt]127..96) > 0) then
 GPR[rd]127..96 ← GPR[rs]127..96

else
 GPR[rd]127..96 ← GPR[rt]127..96

endif

Appendix B C790-Specific Instruction Set Details

B-100

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

rd max (A3, B3) max (A2, B2) max (A1, B1) max (A0, B0)
127 96 95 64 63 32 31 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-101

PMFHI PMFHIParallel Move From HI Register

MMI
011100

MMI2
001001rd PMFHI

01000
0

0000000000

 31 26 25 16 15 11 10 6 5 0

 6 10 5 5 6

C790

Format: PMFHI rd

Purpose: To copy the special purpose register HI to a GPR.

Description: rd ← HI

The contents of special register HI are loaded into GPR rd.

This instruction operates on 128-bit registers.

Restrictions:

None

Operation:
GPR[rd]127..0 ←HI127..0

HI A1 A0
127 64 63 0

rd A1 A0
127 64 63 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-102

PMFHL.fmt PMFHL.fmtParallel Move From HI / LO Register

MMI
011100

PMFHL
110000rd0

0000000000 fmt

 31 26 25 16 15 11 10 6 5 0

 6 10 5 5 6

C790

Format: PMFHL.LW rd (fmt = 0)
PMFHL.UW rd (fmt = 1)
PMFHL.SLW rd (fmt = 2)
PMFHL.LH rd (fmt = 3)
PMFHL.SH rd (fmt = 4)

Purpose: To copy the special purpose registers HI / LO to a GPR.

Description: rd ← HI / LO

The contents of special registers HI / LO are loaded into GPR rd.

This instruction operates on 128-bit registers.

Restrictions:

None

Operation:
if (fmt = 0) then
 GPR[rd]31..0 ← LO31..0

 GPR[rd]63..32 ← HI31..0

 GPR[rd]95..64 ← LO95..64

 GPR[rd]127..96 ← HI95..64

else if (fmt = 1) then
 GPR[rd]31..0 ← LO63..32

 GPR[rd]63..32 ← HI63..32

 GPR[rd]95..64 ← LO127..96

 GPR[rd]127..96 ← HI127..96

else if (fmt = 2) then
 if (0x7FFFFFFFFFFFFFFF > = (HI31..0 || LO31..0) > 0x000000007FFFFFFF) then
 GPR[rd]63..0← 0x000000007FFFFFFF
 else if (0x8000000000000000 < = (HI31..0 || LO31..0) < -0x0000000080000000) then
 GPR[rd]63..0← 0xFFFFFFFF80000000
 else
 GPR[rd]63..0← HI31..0 || LO31..0

endif
 if ((HI95..64 || LO95..64) > 0x000000007FFFFFFF) then
 GPR[rd]127.. 64← 0x000000007FFFFFFF
 else if ((HI95..64 || LO95..64) < -0x0000000080000000) then
 GPR[rd]127.. 64← -0x0000000080000000
 else
 GPR[rd]127.. 64← (LO95)32 || LO95..64

endif
else if (fmt = 3) then
 GPR[rd]15..0 ← LO15..0

Appendix B C790-Specific Instruction Set Details

B-103

 GPR[rd]31..16← LO47..32

 GPR[rd]47..32← HI15..0

 GPR[rd]63..48← HI47..32

 GPR[rd]79..64← LO79..64

 GPR[rd]95..80← LO111..96

 GPR[rd]111..96← HI79..64

 GPR[rd]127..112← HI111..96

else if (fmt = 4) then
 if (0x7FFFFFF> = LO31..0 > 0x00007FFF) then
 GPR[rd]15..0← 0x7FFF
 else if (0x80000000< = LO31..0 < 0xFFFF8000) then
 GPR[rd]15..0← 0x8000
 else
 GPR[rd]15..0← LO15..0

 endif
 if (LO63..32 > 0x00007FFF) then
 GPR[rd]31..16← 0x7FFF
 else if (LO63..32 < 0xFFFF8000) then
 GPR[rd]31..16← 0x8000
 else
 GPR[rd]31..16← LO47..32

 endif
 if (HI31..0 > 0x00007FFF) then
 GPR[rd]47..32← 0x7FFF
 else if (HI31..0 < 0xFFFF8000) then
 GPR[rd]47..32← 0x8000
 else
 GPR[rd]47..32← HI15..0

 endif
 if (HI63..32 > 0x00007FFF) then
 GPR[rd]63..48← 0x7FFF
 else if (HI63..32 < 0xFFFF8000) then
 GPR[rd]63..48← 0x8000
 else
 GPR[rd]63..48← HI47..32

 endif
 if (LO95..64 > 0x00007FFF) then
 GPR[rd]79..64← 0x7FFF
 else if (LO95..64 < -0xFFFF8000) then
 GPR[rd]79..64← 0x8000
 else
 GPR[rd]79..64← LO79..64

 endif
 if (LO127..96 > 0x00007FFF) then
 GPR[rd]95..80← 0x7FFF
 else if (LO127..96 < 0xFFFF8000) then
 GPR[rd]95..80← 0x8000
 else
 GPR[rd]95..80← LO111..96

 endif
 if (HI95..64 > 0x00007FFF) then
 GPR[rd]111..96← 0x7FFF
 else if (HI95..64 < 0xFFFF8000) then
 GPR[rd]111..96← 0x8000

Appendix B C790-Specific Instruction Set Details

B-104

 else
 GPR[rd]111..96← HI79..64

 endif
 if (HI127..96 > 0x00007FFF) then
 GPR[rd]127..112← 0x7FFF
 else if (HI127..96 < 0xFFFF8000) then
 GPR[rd]127..112← 0x8000
 else
 GPR[rd]127..112← HI111..96

 endif
endif

(fmt = 0)

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

LO B1 B0

HI A1 A0

rd A1 B1 A0 B0

(fmt = 1)

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

LO B1 B0

HI A1 A0

rd A1 B1 A0 B0

(fmt = 2)

127 96 95 64 63 32 31 0

HI A1 A0

127 96 95 64 63 32 31 0

LO B1 B0
127 96 95 64 63 32 31 0

rd sign ext saturate(A1 B1) sign ext saturate(A0 B0)

Saturate to Signed Word

Saturate to Signed Word

Appendix B C790-Specific Instruction Set Details

B-105

(fmt = 3)

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rd A3 A2 B3 B2 A1 A0 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

HI A3 A2 A1 A0

LO B3 B2 B1 B0

 (fmt = 4)

LO B3 B2 B1 B0

HI A3 A2 A1 A0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd A3 A2 B3 B2 A1 A0 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Saturate to signed Halfword

Saturate to signed Halfword

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-106

PMFLO PMFLOParallel Move From LO Register

MMI
011100

MMI2
001001rd PMFLO

01001
0

0000000000

 31 26 25 16 15 11 10 6 5 0

 6 10 5 5 6

C790

Format: PMFLO rd

Purpose: To copy the special purpose register LO to a GPR.

Description: rd ← LO

The contents of special register LO are loaded into GPR rd.

This instruction operates on 128-bit registers.

Restrictions:

None

Operation:
GPR[rd]127..0 ←LO127..0

LO A1 A0
127 64 63 0

rd A1 A0
127 64 63 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-107

PMINH PMINHParallel Minimum Halfword

MMI
011100

MMI1
101000rt rd PMINH

00111rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMINH rd, rs, rt

Purpose: To select the minimum of two 16-bit signed integers (8 parallel operations).

Description: rd ← min (rs, rt)

The eight signed halfword values in GPR rt are subtracted from the corresponding eight
signed halfword values in GPR rs in parallel. If the result of each subtraction is larger
than zero, the corresponding signed halfword in GPR rt is placed into the corresponding
halfword in GPR rd otherwise the corresponding signed halfword in GPR rs is placed into
the corresponding halfword of GPR rd.

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]15..0 − GPR[rt]15..0) > 0) then
 GPR[rd]15..0 ← GPR[rt]15..0

else
 GPR[rd]15..0 ← GPR[rs]15..0

endif
if ((GPR[rs]31..16 − GPR[rt]31..16) > 0) then
 GPR[rd]31..16 ← GPR[rt]31..16

else
 GPR[rd]31..16 ← GPR[rs]31..16

endif
if ((GPR[rs]47..32 − GPR[rt]47..32) > 0) then
 GPR[rd]47..32 ← GPR[rt]47..32

else
 GPR[rd]47..32 ← GPR[rs]47..32

endif
if ((GPR[rs]63..48 − GPR[rt]63..48) > 0) then
 GPR[rd]63..48 ← GPR[rt]63..48

else
 GPR[rd]63..48 ← GPR[rs]63..48

endif
if ((GPR[rs]79..64 − GPR[rt]79..64) > 0) then
 GPR[rd]79..64 ← GPR[rt]79..64

else
 GPR[rd]79..64 ← GPR[rs]79..64

endif
if ((GPR[rs]95..80 − GPR[rt]95..80) > 0) then
 GPR[rd]95..80 ← GPR[rt]95..80

else
 GPR[rd]95..80 ← GPR[rs]95..80

endif

Appendix B C790-Specific Instruction Set Details

B-108

if ((GPR[rs]111..96 − GPR[rt]111..96) > 0) then
 GPR[rd]111..96 ← GPR[rt]111..96

else
 GPR[rd]111..96 ← GPR[rs]111..96

endif
if ((GPR[rs]127..112 − GPR[rt]127..112) > 0) then
 GPR[rd]127..112 ← GPR[rt]127..112

else
 GPR[rd]127..112 ← GPR[rs]127..112

endif

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rt B7 B6 B5 B4 B3 B2 B1 B0

rd min (A7, B7) min (A6, B6) min (A5, B5) min (A4, B4) min (A3, B3) min (A2, B2) min (A1, B1) min (A0, B0)

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-109

PMINW PMINWParallel Minimum Word

MMI
011100

MMI1
101000rt rd PMINW

00011rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMINW rd, rs, rt

Purpose: To select the minimum of two 32-bit signed integers (4 parallel operations).

Description: rd ← min (rs, rt)

The four signed word values in GPR rt are subtracts from the corresponding four signed
word values in GPR rs, in parallel. If the result of each subtraction is larger than zero, the
corresponding signed word value in GPR rt is placed into the corresponding word of GPR
rd otherwise the corresponding signed word value in GPR rs is placed into the
corresponding word of GPR rd.

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]31..0 − GPR[rt]31..0) > 0) then
 GPR[rd]31..0 ← GPR[rt]31..0

else
 GPR[rd]31..0 ← GPR[rs]31..0

endif

if ((GPR[rs]63..32 − GPR[rt]63..32) > 0) then
 GPR[rd]63..32 ← GPR[rt]63..32

else
 GPR[rd]63..32 ← GPR[rs]63..32

endif

if ((GPR[rs]95..64 − GPR[rt]95..64) > 0) then
 GPR[rd]95..64 ← GPR[rt]95..64

else
 GPR[rd]95..64 ← GPR[rs]95..64

endif

if ((GPR[rs]127..96 − GPR[rt]127..96) > 0) then
 GPR[rd]127..96 ← GPR[rt]127..96

else
 GPR[rd]127..96 ← GPR[rs]127..96

endif

Appendix B C790-Specific Instruction Set Details

B-110

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

rd min (A3, B3) min (A2, B2) min (A1, B1) min (A0, B0)
127 96 95 64 63 32 31 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-111

PMSUBH PMSUBHParallel Multiply-Subtract Halfword

MMI
011100

MMI2
001001rt rd PMSUBH

10100rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMSUBH rd, rs, rt

Purpose: To multiply 8 pairs of 16-bit signed integers and subtract in parallel.

Description: (rd, HI, LO) ← (HI, LO) − rs × rt

The eight signed halfwords in GPR rs are multiplied by the eight signed halfwords in GPR
rt in parallel. The eight word multiply results are subtracted from the corresponding
words in special registers HI and LO, and the word results are placed into the
corresponding words in special registers HI, LO and GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

None

Operation:
prod0 ← LO 31..0 − GPR[rs]15..0 × GPR[rt]15..0

prod1 ← LO 63..32 − GPR[rs]31..16 × GPR[rt]31..16

prod2 ← HI 31..0 − GPR[rs]47..32 × GPR[rt]47..32

prod3 ← HI 63..32 − GPR[rs]63..48 × GPR[rt]63..48

prod4 ← LO 95..64 − GPR[rs]79..64 × GPR[rt]79..64

prod5 ← LO 127..96 − GPR[rs]95..80 × GPR[rt]95..80

prod6 ← HI 95..64 − GPR[rs]111..96 × GPR[rt]111..96

prod7 ← HI 127..96 − GPR[rs]127..112 × GPR[rt]127..112

LO 31..0 ← prod031..0

LO 63..32 ← prod131..0

HI 31..0 ← prod231..0

HI 63..32 ← prod331..0

LO 95..64 ← prod431..0

LO 127..96 ← prod531..0

HI 95..64 ← prod631..0

HI 127..96 ← prod731..0

GPR[rd] 31..0 ← prod031..0

GPR[rd] 63..32 ← prod231..0

GPR[rd] 95..64 ← prod431..0

GPR[rd] 127..96← prod631..0

Appendix B C790-Specific Instruction Set Details

B-112

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

HI C7 − A7 × B7 C6 − A6 × B6 C3 − A3 × B3 C2 − A2 × B2

× × × × × × × ×

rt B7 B6 B5 B4 B3 B2 B1 B0

127 96 95 64 63 32 31 0

HI C7 C6 C3 C2

LO C5 C4 C1 C0
127 96 95 64 63 32 31 0

LO C5 − A5 × B5 C4 − A4 × B4 C1 − A1 × B1 C0 − A0 × B0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd C6 − A6 × B6 C4 − A4 × B4 C2 − A2 × B2 C0 − A0 × B0

127 96 95 64 63 32 31 0

Exceptions:

None

Programming Notes:

See the Programming Notes for the PMADDH instruction.

Appendix B C790-Specific Instruction Set Details

B-113

PMSUBW PMSUBWParallel Multiply-Subtract Word

MMI
011100

MMI2
001001rt rd PMSUBW

00100rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMSUBW rd, rs, rt

Purpose: To multiply 2 pairs of 32-bit signed integers and subtract in parallel.

Description: (rd, HI, LO) ← (HI, LO) − rs × rt

The low-order signed words of the two doublewords in GPR rs are multiplied by the low-
order signed words of the two doublewords in GPR rt in parallel. The two 64-bit multiply
results are subtracted from the contents of special registers HI and LO. The low-order
word of the two doubleword results are placed into special register LO, and the high-order
word of the two doubleword results are placed into special register HI. The two
doubleword results are placed into GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 127..95 and
63..31 equal) then the result of the equation will be undefined.

Operation:
if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
prod0 ← (HI31..0 || LO31..0) − GPR[rs]31..0 × GPR[rt]31..0

prod1 ← (HI95..64 || LO95..64) − GPR[rs]95..64 × GPR[rt]95..64

LO63..0 ← (prod031)32 || prod031..0

HI63..0 ← (prod063)32 || prod063..32

LO127..64 ← (prod131)32 || prod131..0

HI127..64 ← (prod163)32 || prod163..32

GPR[rd]63..0 ← prod063..0

GPR[rd]127..64 ← prod163..0

Appendix B C790-Specific Instruction Set Details

B-114

rs A3 A2 A1 A0
127 96 95 64 63 32 31 0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd (C6 || C4) − A2 × B2 (C2 || C0) − A0 × B0

HI C7 C6 C3 C2

LO C5 C4 C1 C0

HI sign ext ((C6 || C4) − A2 × B2)63..32 sign ext ((C2 || C0) − A0 × B0)63..32

LO sign ext ((C6 || C4) − A2 × B2)31..0 sign ext ((C2 || C0) − A0 × B0)31..0

127 96 95 64 63 32 31 0

127 64 63 0

127 96 95 64 63 32 31 0

 × ×

Exceptions:

None

Programming Notes:

See the Programming Notes for the PMADDH instruction.

Appendix B C790-Specific Instruction Set Details

B-115

PMTHI PMTHIParallel Move To HI Register

MMI
011100

MMI3
101001rs PMTHI

01000
0

0000000000

 31 26 25 21 20 11 10 6 5 0

 6 5 10 5 6

C790

Format: PMTHI rs

Purpose: To copy a GPR to the special purpose register HI.

Description: HI ← rs

The contents of GPR rs are loaded into special register HI.

This instruction operates on 128-bit registers.

Restrictions:
None

Operation:
HI127..0 ←GPR[rs]127..0

rs A1 A0
127 64 63 0

HI A1 A0
127 64 63 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-116

PMTHL.fmt PMTHL.fmtParallel Move To HI / LO Register

MMI
011100

PMTHL
110001rs 0

0000000000 fmt

 31 26 25 21 20 11 10 6 5 0

 6 5 10 5 6

C790

Format: PMTHL.LW rs (fmt = 0)

Purpose: To copy a GPR to the special registers HI / LO.

Description: HI / LO ← rs

The contents of GPR rd are loaded into special register HI / LO.

This instruction operates on 128-bit registers.

Restrictions:
None

Operation:
if (fmt = 0) then
 LO31..0 ←GPR[rs]31..0

 LO63..32 ←LO63..32

 HI31..0 ←GPR[rs]63..32

 HI63..32 ←HI63..32

 LO95..64 ←GPR[rs]95..64

 LO127..96 ←LO127..96

 HI95..64 ←GPR[rs]127..96

 HI127..96 ←HI127..96

endif

rs A3 A2 A1 A0

127 96 95 64 63 32 31 0

HI (not changed) A3 (not changed) A1

127 96 95 64 63 32 31 0

LO (not changed) A2 (not changed) A0
127 96 95 64 63 32 31 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-117

PMTLO PMTLOParallel Move To LO Register

MMI
011100

MMI3
101001rs PMTLO

01001
0

0000000000

 31 26 25 21 20 11 10 6 5 0

 6 5 10 5 6

C790

Format: PMTLO rs

Purpose: To copy a GPR to the special register LO.

Description: LO ← rs

The contents of GPR rs are loaded into special register LO.

This instruction operates on 128-bit registers.

Restrictions:
None

Operation:
LO127..0 ←GPR[rs]127..0

rs A1 A0
127 64 63 0

LO A1 A0
127 64 63 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-118

PMULTH PMULTHParallel Multiply Halfword

MMI
011100

MMI2
001001rt rd PMULTH

11100rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMULTH rd, rs, rt

Purpose: To multiply 8 pairs of 16-bit signed integers in parallel.

Description: (rd, LO, HI) ← rs × rt

The eight signed halfwords in GPR rs are multiplied by the eight signed halfwords in GPR
rt, in parallel. The eight word results are placed into special register HI, LO and GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

None

Operation:
prod0 ← GPR[rs]15..0 × GPR[rt]15..0

prod1 ← GPR[rs]31..16 × GPR[rt]31..16

prod2 ← GPR[rs]47..32 × GPR[rt]47..32

prod3 ← GPR[rs]63..48 × GPR[rt]63..48

prod4 ← GPR[rs]79..64 × GPR[rt]79..64

prod5 ← GPR[rs]95..80 × GPR[rt]95..80

prod6 ← GPR[rs]111..96 × GPR[rt]111..96

prod7 ← GPR[rs]127..112 × GPR[rt]127..112

LO 31..0 ← prod031..0

LO 63..32 ← prod131..0

HI 31..0 ← prod231..0

HI 63..32 ← prod331..0

LO 95..64 ← prod431..0

LO 127..96 ← prod531..0

HI 95..64 ← prod631..0

HI 127..96 ← prod731..0

GPR[rd]31..0 ← prod031..0

GPR[rd]63..32 ← prod231..0

GPR[rd]95..64 ← prod431..0

GPR[rd]127..96 ← prod631..0

Appendix B C790-Specific Instruction Set Details

B-119

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rt B7 B6 B5 B4 B3 B2 B1 B0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

HI A7 × B7 A6 × B6 A3 × B3 A2 × B2

LO A5 × B5 A4 × B4 A1 × B1 A0 × B0

 × × × × × × × ×

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd A6 × B6 A4 × B4 A2 × B2 A0 × B0

127 96 95 64 63 32 31 0

Exceptions:

None

Programming Notes:

See the Programming Notes of the PMADDH instruction.

Appendix B C790-Specific Instruction Set Details

B-120

PMULTUW PMULTUWParallel Multiply Unsigned Word

MMI
011100

MMI3
101001rt rd PMULTUW

01100rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMULTUW rd, rs, rt

Purpose: To multiply 2 pairs of 32-bit unsigned integers in parallel.

Description: (rd, LO, HI) ← rs × rt

The low-order unsigned words of the two doublewords in GPR rs are multiplied by the
low-order unsigned words of the two doublewords in GPR rt in parallel. The low-order
word of the two doubleword result is placed into special register LO, and the high-order
word of the two doubleword result is placed into special register HI. The two doubleword
results are placed into GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

If either GPR rt or GPR rs do not contain zero-extended 32-bit values (bits 127..96 and
63..32 equal zero) then the result of the equation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
prod0 ← (0 || GPR[rs]31..0) × (0 || GPR[rt]31..0)
prod1 ← (0 || GPR[rs]95..64) × (0 || GPR[rt]95..64)
LO63..0 ← (prod0 31)32 || prod031..0

HI63..0 ← (prod0 63)32 || prod063..32

LO127..64 ← (prod1 31)32 || prod131..0

HI127..64 ← (prod1 63)32 || prod163..32

GPR[rd]63..0 ← prod0
GPR[rd]127..64 ← prod1

rs A3 A2 A1 A0
127 96 95 64 63 32 31 0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0× ×

127 64 63 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

HI sign ext ((0 || A2) × (0 || B2)) 63..32 sign ext ((0 || A0) × (0 || B0)) 63..32

LO sign ext (0 || A2) × (0 || B2) 31..0 sign ext ((0 || A0) × (0 || B0)) 31..0

rd (0 || A2) × (0 || B2) (0 || A0) × (0 || B0)

Appendix B C790-Specific Instruction Set Details

B-121

Exceptions:

None

Programming Notes:

See the Programming Notes of the PMADDH instruction.

Appendix B C790-Specific Instruction Set Details

B-122

PMULTW PMULTWParallel Multiply Word

MMI
011100

MMI2
001001rt rd PMULTW

01100rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PMULTW rd, rs, rt

Purpose: To multiply 2 pairs of 32-bit signed integers in parallel.

Description: (rd, LO, HI) ← rs × rt

The low-order signed words of the two doublewords in GPR rs are multiplied by the low-
order signed words of the two doublewords in GPR rt in parallel. The low-order word of
the two doubleword results is placed into special register LO, and the high-order word of
the two doubleword results is placed into special register HI. The two doubleword results
are placed into GPR rd.

No arithmetic exception occurs under any circumstances.

This instruction operates on 128-bit registers.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 127..95 and
63..31 equal) then the result of the equation will be undefined.

Operation:
if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
prod0 ← GPR[rs]31..0 × GPR[rt]31..0

prod1 ← GPR[rs]95..64 × GPR[rt]95..64

LO63..0 ← (prod0 31)32 || prod031..0

HI63..0 ← (prod0 63)32 || prod063..32

LO127..64 ← (prod1 31)32 || prod131..0

HI127..64 ← (prod1 63)32 || prod163..32

GPR[rd]63..0 ← prod0
GPR[rd]127..64 ← prod1

rs A3 A2 A1 A0
127 96 95 64 63 32 31 0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

 × ×

rd A2 × B2 A0 × B0

127 64 63 0

127 96 95 64 63 32 31 0

HI sign ext (A2 × B2) 63..32 sign ext (A0 × B0) 63..32

LO sign ext (A2 × B2) 31..0 sign ext (A0 × B0) 31..0

127 96 95 64 63 32 31 0

Appendix B C790-Specific Instruction Set Details

B-123

Exceptions:

None

Programming Notes:

See the Programming Notes of the PMADDH instruction.

Appendix B C790-Specific Instruction Set Details

B-124

PNOR PNORParallel Not Or

MMI
011100

MMI3
101001rt rd PNOR

10011rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PNOR rd, rs, rt

Purpose: To do a bitwise logical NOT OR (NOR).

Description: rd ← rs NOR rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR
operation. The result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]127..0 ← GPR[rs]127..0 nor GPR[rt]127..0

rs A1 A0
127 64 63 0

rd A1 NOR B1 A0 NOR B0
127 64 63 0

rt B1 B0
127 64 63 0

 NOR NOR

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-125

POR PORParallel Or

MMI
011100

MMI3
101001rt rd POR

10010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: POR rd, rs, rt

Purpose: To do a bitwise logical OR.

Description: rd ← rs OR rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR
operation. The result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]127..0 ← GPR[rs]127..0 or GPR[rt]127..0

rs A1 A0
127 64 63 0

rd A1 OR B1 A0 OR B0
127 64 63 0

rt B1 B0
127 64 63 0

 OR OR

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-126

PPAC5 PPAC5Parallel Pack to 5-bits

MMI
011100

MMI0
001000rt rd PPAC5

11111
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PPAC5 rd, rt

Purpose: To truncate and pack data into consecutive 5-bits.

Description: rd ← pack (rt)

The four 32-bit words (8, 8, 8, 8 bit) in GPR rt are packed into the four 16-bit halfwords (1,
5, 5, 5 bit). The results are placed into GPR rd. See diagram on next page.

This instruction operates on 128-bit registers.

Operation
GPR[rd]4..0 ← GPR[rt]7..3

GPR[rd]9..5 ← GPR[rt]15..11

GPR[rd]14..10 ← GPR[rt]23..19

GPR[rd]15 ← GPR[rt]31

GPR[rd]31..16 ← 016

GPR[rd]36..32 ← GPR[rt]39..35

GPR[rd]41..37 ← GPR[rt]47..43

GPR[rd]46..42 ← GPR[rt]55..51

GPR[rd]47 ← GPR[rt]63

GPR[rd]63..48 ← 016

GPR[rd]68..64 ← GPR[rt]71..67

GPR[rd]73..69 ← GPR[rt]79..75

GPR[rd]78..74 ← GPR[rt]87..83

GPR[rd]79 ← GPR[rt]95

GPR[rd]95..80 ← 016

GPR[rd]100..96 ← GPR[rt]103..99

GPR[rd]105..101 ← GPR[rt]111..107

GPR[rd]110..106 ← GPR[rt]119..115

GPR[rd]111 ← GPR[rt]127

GPR[rd]127..112 ← 016

Appendix B C790-Specific Instruction Set Details

B-127

 127 96 95 64 63 32 31 0
 [Overview]

 [Detail of word region (31..0)]

 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Zoom

rt

rd

 31 30 24 23 19 18 16 15 11 10 8 7 3 2 0

 31 16 15 14 10 9 5 4 0

rt A3 A2 A1 A0

rd 016 A3 A2 A1 A0

5bit 5bit 5bit1bit

8bit8bit8bit8bit

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-128

PPACB PPACBParallel Pack to Byte

MMI
011100

MMI0
001000rt rd PPACB

11011rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PPACB rd, rs, rt

Purpose: To pack into consecutive bytes.

Description: rd ← pack (rs, rt)

The low-order bytes of the eight halfwords in GPR rs are packed into consecutive bytes of
the high-order doubleword in GPR rd. Similarly, the low-order bytes of the eight halfwords
in GPR rt are packed into consecutive bytes of the low-order doubleword in GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]7..0 ← GPR[rt]7..0

GPR[rd]15..8 ← GPR[rt]23..16

GPR[rd]23..16 ← GPR[rt]39..32

GPR[rd]31..24 ← GPR[rt]55..48

GPR[rd]39..32 ← GPR[rt]71..64

GPR[rd]47..40 ← GPR[rt]87..80

GPR[rd]55..48 ← GPR[rt]103..96

GPR[rd]63..56 ← GPR[rt]119..112

GPR[rd]71..64 ← GPR[rs]7..0

GPR[rd]79..72 ← GPR[rs]23..16

GPR[rd]87..80 ← GPR[rs]39..32

GPR[rd]95..88 ← GPR[rs]55..48

GPR[rd]103..96 ← GPR[rs]71..64

GPR[rd]111..104 ← GPR[rs]87..80

GPR[rd]119..112 ← GPR[rs]103..96

GPR[rd]127..120 ← GPR[rs]119..112

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0

rt B7 B6 B5 B4 B3 B2 B1 B0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-129

PPACH PPACHParallel Pack to Halfword

MMI
011100

MMI0
001000rt rd PPACH

10111rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PPACH rd, rs, rt

Purpose: To pack into consecutive halfwords.

Description: rd ← pack (rs, rt)

The low-order halfwords of the four words in GPR rs are packed into consecutive
halfwords of the high-order doubleword in GPR rd. Similarly, the low-order halfwords of
the four words in GPR rt are packed into consecutive halfwords of the low-order
doubleword in GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← GPR[rt]15..0

GPR[rd]31..16 ← GPR[rt]47..32

GPR[rd]47..32 ← GPR[rt]79..64

GPR[rd]63..48 ← GPR[rt]111..96

GPR[rd]79..64 ← GPR[rs]15..0

GPR[rd]95..80 ← GPR[rs]47..32

GPR[rd]111..96 ← GPR[rs]79..64

GPR[rd]127..112 ← GPR[rs]111..96

rs A3 A2 A1 A0

rd A3 A2 A1 A0 B3 B2 B1 B0

rt B3 B2 B1 B0

 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-130

PPACW PPACWParallel Pack to Word

MMI
011100

MMI0
001000rt rd PPACW

10011rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PPACW rd, rs, rt

Purpose: To pack into consecutive words.

Description: rd ← pack (rs, rt)

The low-order words of the two doublewords in GPR rs are packed into consecutive words
of the high-order doubleword in GPR rd. Similarly, the low-order words of the two
doublewords in GPR rt are packed into consecutive words of the low-order doubleword in
GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]31..0 ← GPR[rt]31..0

GPR[rd]63..32 ← GPR[rt]95..64

GPR[rd]95..64 ← GPR[rs]31..0

GPR[rd]127..96 ← GPR[rs]95..64

rs A1 A0

rd A1 A0 B1 B0

rt B1 B0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-131

PREVH PREVHParallel Reverse Halfword

MMI
011100

MMI2
001001rt rd PREVH

11011
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PREVH rd, rt

Purpose: To reverse halfwords.

Description: rd ← reverse (rt)

The four high-order halfwords in GPR rt are reversed and the four low-order halfwords in
GPR rt are reversed. The results are placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← GPR[rt]63..48

GPR[rd]31..16 ← GPR[rt]47..32

GPR[rd]47..32 ← GPR[rt]31..16

GPR[rd]63..48 ← GPR[rt]15..0

GPR[rd]79..64 ← GPR[rt]127..112

GPR[rd]95..80 ← GPR[rt]111..96

GPR[rd]111..96 ← GPR[rt]95..80

GPR[rd]127..112 ← GPR[rt]79..64

rt A7 A6 A5 A4 A3 A2 A1 A0

rd A4 A5 A6 A7 A0 A1 A2 A3

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-132

PROT3W PROT3WParallel Rotate 3 Words Left

MMI
011100

MMI2
001001rt rd PROT3W

11111
0

00000

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PROT3W rd, rt

Purpose: To rotate words.

Description: rd ← rotate (rt)

The three low-order words in GPR rt are rotated to the right. The results are placed into
GPR rd while the other word is copied directly to the corresponding word in GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]31..0 ← GPR[rt]63..32

GPR[rd]63..32 ← GPR[rt]95..64

GPR[rd]95..64 ← GPR[rt]31..0

GPR[rd]127..96 ← GPR[rt]127..96

rt A3 A2 A1 A0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd A3 A0 A2 A1

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-133

PSLLH PSLLHParallel Shift Left Logical Halfword

MMI
011100

PSLLH
110100rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSLLH rd, rt, sa

Purpose: To logically shift left 8 halfwords by a fixed number of bits, in parallel.

Description: rd ← rt << sa (logical)

The eight halfwords in GPR rt are shifted left in parallel, inserting zeros into the emptied
bits; the results are placed into the corresponding eight halfwords in GPR rd. The bit shift
count is specified by the low-order four bits of sa.

This instruction operates on 128-bit registers.

Operation:
s ← sa3..0

GPR[rd]15..0 ← GPR[rt](15-s)..0 || 0s

GPR[rd]31..16 ← GPR[rt](31-s)..16 || 0s

GPR[rd]47..32 ← GPR[rt](47-s)..32 || 0s

GPR[rd]63..48 ← GPR[rt](63-s)..48 || 0s

GPR[rd]79..64 ← GPR[rt](79-s)..64 || 0s

GPR[rd]95..80 ← GPR[rt](95-s)..80 || 0s

GPR[rd]111..96 ← GPR[rt](111-s)..96 || 0s

GPR[rd]127..112 ← GPR[rt](127-s)..112 || 0s

rt A7 A6 A5 A4 A3 A2 A1 A0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

s bit s bit s bit s bit s bit s bit s bit s bit

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rd A7 0s A6 0s A5 0s A4 0s A3 0s A2 0s A1 0s A0 0s

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-134

PSLLVW PSLLVWParallel Shift Left Logical Variable Word

MMI
011100

MMI2
001001rt rd PSLLVW

00010rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSLLVW rd, rt, rs

Purpose: To logically shift left 2 words by a variable number of bits, in parallel.

Description: rd ← rt << rs (logical)

The low-order words of the two doublewords in GPR rt are shifted left in parallel,
inserting zeros into the emptied bits; the results are placed into the corresponding two
words in GPR rd. The bit shift counts are specified by the low-order five bits of the two
doublewords in GPR rs.

This instruction operates on 128-bit registers.

Operation:
s0 ← GPR[rs]4..0

s1 ← GPR[rs]68..64

temp0 ← GPR[rt](31-s0)..0 || 0s0

temp1 ← GPR[rt](95-s1)..64 || 0s1

GPR[rd]63..0 ← (temp031)32 || temp031..0

GPR[rd]127..64 ← (temp131)32 || temp131..0

rs s1 s0

127 96 95 64 63 32 31 0

s1 bit

127 68 64 63 4 0

rd sign ext A1 0s1 sign ext A0 0s0

s0 bit

127 96 95 64 63 32 31 0
rt A1 A0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-135

PSLLW PSLLWParallel Shift Left Logical Word

MMI
011100

PSLLW
111100rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSLLW rd, rt, sa

Purpose: To logically shift left 4 words by a fixed number of bits, in parallel.

Description: rd ← rt << sa (logical)

The four words in GPR rt are shifted left by five bits of sa in parallel, inserting zeros into
the emptied bits; the results are placed into the corresponding four words in GPR rd.

This instruction operates on 128-bit registers.

Operation:
s ← sa4..0

GPR[rd]31..0 ← GPR[rt](31-s)..0 || 0s

GPR[rd]63..32 ← GPR[rt](63-s)..32 || 0s

GPR[rd]95..64 ← GPR[rt](95-s)..64 || 0s

GPR[rd]127..96 ← GPR[rt](127-s)..96 || 0s

rt A3 A2 A1 A0
127 96 95 64 63 32 31 0

rd A3 0s A2 0s A1 0s A0 0s

127 96 95 64 63 32 31 0

s bit s bit s bit s bit

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-136

PSRAH PSRAHParallel Shift Right Arithmetic Halfword

MMI
011100

PSRAH
110111rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSRAH rd, rt, sa

Purpose: To arithmetically shift right 8 halfwords by a fixed number of bits, in parallel.

Description: rd ← rt >> sa (arithmetic)

The eight halfwords in GPR rt are shifted right by sa bits in parallel sign extending the
high order bits; the results are placed into the corresponding eight halfwords in GPR rd.
The bit shift count is specified by the low-order four bits of sa.

This instruction operates on 128-bit registers.

Operation:
s ← sa3..0

GPR[rd]15..0 ← (GPR[rt]15)s || GPR[rt]15..s

GPR[rd]31..16 ← (GPR[rt]31)s || GPR[rt]31..(16+s)

GPR[rd]47..32 ← (GPR[rt]47)s || GPR[rt]47..(32+s)

GPR[rd]63..48 ← (GPR[rt]63)s || GPR[rt]63..(48+s)

GPR[rd]79..64 ← (GPR[rt]79)s || GPR[rt]79..(64+s)

GPR[rd]95..80 ← (GPR[rt]95)s || GPR[rt]95..(80+s)

GPR[rd]111..96 ← (GPR[rt]111)s || GPR[rt]111..(96+s)

GPR[rd]127..112 ← (GPR[rt]127)s || GPR[rt]127..(112+s)

rt A7 A6 A5 A4 A3 A2 A1 A0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rd sign ext A7 sign ext A6 sign ext A5 sign ext A4 sign ext A3 sign ext A2 sign ext A1 sign ext A0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

s bit s bit s bit s bit s bit s bit s bit s bit

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-137

PSRAVW PSRAVWParallel Shift Right Arithmetic Variable Word

MMI
011100

MMI3
101001rt rd PSRAVW

00011rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSRAVW rd, rt, rs

Purpose: To arithmetically shift right 2 words by a variable number of bits, in parallel.

Description: rd ← rt >> rs (arithmetic)

The low-order words of the two doublewords in GPR rt are shifted right in parallel, sign
extending the high order bits; the results are placed into the corresponding two words in
GPR rd. The bit shift counts are specified by the low-order five bits of the two doublewords
in GPR rs.

This instruction operates on 128-bit registers.

Operation:
s0 ← GPR[rs]4..0

s1 ← GPR[rs]68..64

temp0 ← (GPR[rt]31)s0 || GPR[rt]31..s0

temp1 ← (GPR[rt]95)s1 || GPR[rt]95..(64+s1)

GPR[rd]63..0 ← (temp031)32 || temp031..0

GPR[rd]127..64 ← (temp131)32 || temp131..0

rs s1 s0
127 68 64 63 4 0

rt A1 A0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

rd sign ext A1 sign ext A0sign
ext

sign
ext

s1 bit s0 bit

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-138

PSRAW PSRAWParallel Shift Right Arithmetic Word

MMI
011100

PSRAW
111111rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSRAW rd, rt, sa

Purpose: To arithmetically shift right 4 word by a fixed number of bits, in parallel.

Description: rd ← rt >> sa (arithmetic)

The four words in GPR rt are shifted right by five bits of sa in parallel, sign extending the
high order bits; the results are placed into the corresponding four words in GPR rd.

This instruction operates on 128-bit registers.

Operation:
s ← sa4..0

GPR[rd]31..0 ← (GPR[rt]31)s || GPR[rt]31..s

GPR[rd]63..32 ← (GPR[rt]63)s || GPR[rt]63..(32+s)

GPR[rd]95..64 ← (GPR[rt]95)s || GPR[rt]95..(64+s)

GPR[rd]127..96 ← (GPR[rt]127)s || GPR[rt]127..(96+s)

rt A3 A2 A1 A0
127 96 95 64 63 32 31 0

rd sign ext A3 sign ext A2 sign ext A1 sign ext A0
127 96 95 64 63 32 31 0

 s bit s bit s bit s bit

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-139

PSRLH PSRLHParallel Shift Right Logical Halfword

MMI
011100

PSRLH
110110rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSRLH rd, rt, sa

Purpose: To logically shift right 8 halfwords by a fixed number of bits, in parallel.

Description: rd ← rt >> sa (logical)

The eight halfwords in GPR rt are shifted right by sa bits, in parallel, inserting zeros into
the high order bits; the results are placed into the corresponding eight halfwords in GPR
rd. The bit shift count is specified by the low-order four bits of sa.

This instruction operates on 128-bit registers.

Operation:
s ← sa3..0

GPR[rd]15..0 ← 0s || GPR[rt]15..s

GPR[rd]31..16 ← 0s || GPR[rt]31..(16+s)

GPR[rd]47..32 ← 0s || GPR[rt]47..(32+s)

GPR[rd]63..48 ← 0s || GPR[rt]63..(48+s)

GPR[rd]79..64 ← 0s || GPR[rt]79..(64+s)

GPR[rd]95..80 ← 0s || GPR[rt]95..(80+s)

GPR[rd]111..96 ← 0s || GPR[rt]111..(96+s)

GPR[rd]127..112 ← 0s || GPR[rt]127..(112+s)

rt A7 A6 A5 A4 A3 A2 A1 A0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

s bit s bit s bit s bit s bit s bit s bit s bit

rd 0s A7 0s A6 0s A5 0s A4 0s A3 0s A2 0s A1 0s A0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-140

PSRLVW PSRLVWParallel Shift Right Logical Variable Word

MMI
011100

MMI2
001001rt rd PSRLVW

00011rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSRLVW rd, rt, rs

Purpose: To logically shift right 2 words by a variable number of bits, in parallel.

Description: rd ← rt >> rs (logical)

The low-order words of the two doublewords in GPR rt are shifted right in parallel,
inserting zeros into the high order bits. The results are sign extended; the results are
placed into the corresponding two words in GPR rd. The bit shift counts are specified by
the low-order five bits of the two doublewords in GPR rs.

This instruction operates on 128-bit registers.

Operation:
s0 ← GPR[rs]4..0

s1 ← GPR[rs]68..64

temp0 ← 0s0 || GPR[rt]31..s0

temp1 ← 0s1 || GPR[rt]95..(64+s1)

GPR[rd]63..0 ← (temp031)32 || temp0 31..0

GPR[rd]127..64 ← (temp131)32 || temp1 31..0

rs s1 s0

127 96 95 64 63 32 31 0

s1 bit

 127 68 64 63 4 0

rd sign ext 0s1 A1 sign ext 0s0 A0

s0 bit

127 96 95 64 63 32 31 0

rt A1 A0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-141

PSRLW PSRLWParallel Shift Right Logical Word

MMI
011100

PSRLW
111110rt rd0

00000 sa

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSRLW rd, rt, sa

Purpose: To logically shift right 4 words by a fixed number of bits, in parallel.

Description: rd ← rt >> sa (logical)

The four words in GPR rt are shifted right by five bits of sa, in parallel, inserting zeros
into the high order bits; the results are placed into the corresponding four words in GPR
rd.

This instruction operates on 128-bit registers.

Operation:
s ← sa4..0

GPR[rd]31..0 ← 0s || GPR[rt]31..s

GPR[rd]63..32 ← 0s || GPR[rt]63..(32+s)

GPR[rd]95..64 ← 0s || GPR[rt]95..(64+s)

GPR[rd]127..96 ← 0s || GPR[rt]127..(96+s)

rt A3 A2 A1 A0
127 96 95 64 63 32 31 0

rd 0s A3 0s A2 0s A1 0s A0
127 96 95 64 63 32 31 0

s bit s bit s bit s bit

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-142

PSUBB PSUBBParallel Subtract Byte

MMI
011100

MMI0
001000rt rd PSUBB

01001rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSUBB rd, rs, rt

Purpose: To subtract 16 pairs of 8-bit integers in parallel.

Description: rd ← rs − rt

The sixteen signed byte values in GPR rt are subtracted from the corresponding sixteen
byte values in GPR rs in parallel. The results are placed into the corresponding sixteen
bytes in GPR rd.

No overflow or underflow exceptions are generated under any circumstances.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]7..0 ← (GPR[rs]7..0 − GPR[rt]7..0)7..0

GPR[rd]15..8 ← (GPR[rs]15..8 − GPR[rt]15..8)7..0

GPR[rd]23..16 ← (GPR[rs]23..16 − GPR[rt]23..16)7..0

GPR[rd]31..24 ← (GPR[rs]31..24 − GPR[rt]31..24)7..0

GPR[rd]39..32 ← (GPR[rs]39..32 − GPR[rt]39..32)7..0

GPR[rd]47..40 ← (GPR[rs]47..40 − GPR[rt]47..40)7..0

GPR[rd]55..48 ← (GPR[rs]55..48 − GPR[rt]55..48)7..0

GPR[rd]63..56 ← (GPR[rs]63..56 − GPR[rt]63..56)7..0

GPR[rd]71..64 ← (GPR[rs]71..64 − GPR[rt]71..64)7..0

GPR[rd]79..72 ← (GPR[rs]79..72 − GPR[rt]79..72)7..0

GPR[rd]87..80 ← (GPR[rs]87..80 − GPR[rt]87..80)7..0

GPR[rd]95..88 ← (GPR[rs]95..88 − GPR[rt]95..88)7..0

GPR[rd]103..96 ← (GPR[rs]103..96 − GPR[rt]103..96)7..0

GPR[rd]111..104 ← (GPR[rs]111..104 − GPR[rt]111..104)7..0

GPR[rd]119..112 ← (GPR[rs]119..112 − GPR[rt]119..112)7..0

GPR[rd]127..120 ← (GPR[rs]127..120 − GPR[rt]127..120)7..0

rs A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

rt B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

− − − − − − − − − − − − − − − −

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
A0
−

B0

A1
−

B1

A2
−

B2

A3
−

B3

A4
−

B4

A5
−

B5

A6
−

B6

A7
−

B7

A8
−

B8

A9
−

B9

A10
−

B10

A11
−

B11

A12
−

B12

A13
−

B13

A14
−

B14

A15
−

B15
rd

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-143

PSUBH PSUBHParallel Subtract Halfword

MMI
011100

MMI0
001000rt rd PSUBH

00101rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSUBH rd, rs, rt

Purpose: To subtract 8 pairs of 16-bit integers in parallel.

Description: rd ← rs − rt

The eight signed halfwords in GPR rt are subtracted from the corresponding eight
halfwords in GPR rs in parallel. The results are placed into the corresponding eight
halfwords in GPR rd.

No overflow or underflow exceptions are generated under any circumstances.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]15..0 ← (GPR[rs]15..0 − GPR[rt]15..0)15..0

GPR[rd]31..16 ← (GPR[rs]31..16 − GPR[rt]31..16)15..0

GPR[rd]47..32 ← (GPR[rs]47..32 − GPR[rt]47..32)15..0

GPR[rd]63..48 ← (GPR[rs]63..48 − GPR[rt]63..48)15..0

GPR[rd]79..64 ← (GPR[rs]79..64 − GPR[rt]79..64)15..0

GPR[rd]95..80 ← (GPR[rs]95..80 − GPR[rt]95..80)15..0

GPR[rd]111..96 ← (GPR[rs]111..96 − GPR[rt]111..96)15..0

GPR[rd]127..112 ← (GPR[rs]127..112 − GPR[rt]127..112)15..0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd A7−B7 A6−B6 A5−B5 A4−B4 A3−B3 A2−B2 A1−B1 A0−B0

rt B7 B6 B5 B4 B3 B2 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

− − − − − − − −

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-144

PSUBSB PSUBSBParallel Subtract with Signed saturation Byte

MMI
011100

MMI0
001000rt rd PSUBSB

11001rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSUBSB rd, rs, rt

Purpose: To subtract 16 pairs of 8-bit signed integers with saturation in parallel.

Description: rd ← rs − rt

The sixteen signed bytes in GPR rt are subtracted from the corresponding sixteen signed
bytes in GPR rs in parallel. The results are placed into the corresponding sixteen bytes in
GPR rd.

No overflow or underflow exceptions are generated under any circumstances. Results
beyond the range of a signed byte value are saturated according to the following:

Overflow: 0x7F

Underflow: 0x80

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]7..0 − GPR[rt]7..0) > 0x7F) then
 GPR[rd]7..0 ← 0x7F
else if (0x100 <= (GPR[rs]7..0 − GPR[rt]7..0) < 0x180) then
 GPR[rd]7..0 ← 0x80
else
 GPR[rd]7..0 ← (GPR[rs]7..0 − GPR[rt]7..0)7..0

endif

if ((GPR[rs]15..8 − GPR[rt]15..8) > 0x7F) then
 GPR[rd]15..8 ← 0x7F
else if (0x100 <= (GPR[rs]15..8 − GPR[rt]15..8) < 0x180) then
 GPR[rd]15..8 ← 0x80
else
 GPR[rd]15..8 ← (GPR[rs]15..8 − GPR[rt]15..8)7..0

endif

if ((GPR[rs]23..16 − GPR[rt]23..16) > 0x7F) then
 GPR[rd]23..16 ← 0x7F
else if (0x100 <= (GPR[rs]23..16 − GPR[rt]23..16) < 0x180) then
 GPR[rd]23..16 ← 0x80
else
 GPR[rd]23..16 ← (GPR[rs]23..16 − GPR[rt]23..16)7..0

endif

Appendix B C790-Specific Instruction Set Details

B-145

if ((GPR[rs]31..24 − GPR[rt]31..24) > 0x7F) then
 GPR[rd]31..24 ← 0x7F
else if (0x100 <= (GPR[rs]31..24 − GPR[rt]31..24) < 0x180) then
 GPR[rd]31..24 ← 0x80
else
 GPR[rd]31..24 ← (GPR[rs]31..24 − GPR[rt]31..24)7..0

endif

if ((GPR[rs]39..32 − GPR[rt]39..32) > 0x7F) then
 GPR[rd]39..32 ← 0x7F
else if (0x100 <= (GPR[rs]39..32 − GPR[rt]39..32) < 0x180) then
 GPR[rd]39..32 ← 0x80
else
 GPR[rd]39..32 ← (GPR[rs]39..32 − GPR[rt]39..32)7..0

endif

if ((GPR[rs]47..40 − GPR[rt]47..40) > 0x7F) then
 GPR[rd]47..40 ← 0x7F
else if (0x100 <= (GPR[rs]47..40 − GPR[rt]47..40) < 0x180) then
 GPR[rd]47..40 ← 0x80
else
 GPR[rd]47..40 ← (GPR[rs]47..40 − GPR[rt]47..40)7..0

endif

if ((GPR[rs]55..48 − GPR[rt]55..48) > 0x7F) then
 GPR[rd]55..48 ← 0x7F
else if (0x100 <= (GPR[rs]55..48 − GPR[rt]55..48) < 0x180) then
 GPR[rd]55..48 ← 0x80
else
 GPR[rd]55..48 ← (GPR[rs]55..48 − GPR[rt]55..48)7..0

endif

if ((GPR[rs]63..56 − GPR[rt]63..56) > 0x7F) then
 GPR[rd]63..56 ← 0x7F
else if (0x100 <= (GPR[rs]63..56 − GPR[rt]63..56) < 0x180) then
 GPR[rd]63..56 ← 0x80
else
 GPR[rd]63..56 ← (GPR[rs]63..56 − GPR[rt]63..56)7..0

endif

if ((GPR[rs]71..64 − GPR[rt]71..64) > 0x7F) then
 GPR[rd]71..64 ← 0x7F
else if (0x100 <= (GPR[rs]71..64 − GPR[rt]71..64) < 0x180) then
 GPR[rd]71..64 ← 0x80
else
 GPR[rd]71..64 ← (GPR[rs]71..64 − GPR[rt]71..64)7..0

endif

Appendix B C790-Specific Instruction Set Details

B-146

if ((GPR[rs]79..72 − GPR[rt]79..72) > 0x7F) then
 GPR[rd]79..72 ← 0x7F
else if (0x100 <= (GPR[rs]79..72 − GPR[rt]79..72) < 0x180) then
 GPR[rd]79..72 ← 0x80
else
 GPR[rd]79..72 ← (GPR[rs]79..72 − GPR[rt]79..72)7..0

endif

if ((GPR[rs]87..80 − GPR[rt]87..80) > 0x7F) then
 GPR[rd]87..80 ← 0x7F
else if (0x100 <= (GPR[rs]87..80 − GPR[rt]87..80) < 0x180) then
 GPR[rd]87..80 ← 0x80
else
 GPR[rd]87..80 ← (GPR[rs]87..80 − GPR[rt]87..80)7..0

endif

if ((GPR[rs]95..88 − GPR[rt]95..88) > 0x7F) then
 GPR[rd]95..88 ← 0x7F
else if (0x100 <= (GPR[rs]95..88 − GPR[rt]95..88) < 0x180) then
 GPR[rd]95..88 ← 0x80
else
 GPR[rd]95..88 ← (GPR[rs]95..88 − GPR[rt]95..88)7..0

endif

if ((GPR[rs]103..96 − GPR[rt]103..96) > 0x7F) then
 GPR[rd]103..96 ← 0x7F
else if (0x100 <= (GPR[rs]103..96 − GPR[rt]103..96) < 0x180) then
 GPR[rd]103..96 ← 0x80
else
 GPR[rd]103..96 ← (GPR[rs]103..96 − GPR[rt]103..96)7..0

endif

if ((GPR[rs]111..104 − GPR[rt]111..104) > 0x7F) then
 GPR[rd]111..104 ← 0x7F
else if (0x100 <= (GPR[rs]111..104 − GPR[rt]111..104) < 0x180) then
 GPR[rd]111..104 ← 0x80
else
 GPR[rd]111..104 ← (GPR[rs]111..104 − GPR[rt]111..104)7..0

endif

if ((GPR[rs]119..112 − GPR[rt]119..112) > 0x7F) then
 GPR[rd]119..112 ← 0x7F
else if (0x100 <= (GPR[rs]119..112 − GPR[rt]119..112) < 0x180) then
 GPR[rd]119..112 ← 0x80
else
 GPR[rd]119..112 ← (GPR[rs]119..112 − GPR[rt]119..112)7..0

endif

Appendix B C790-Specific Instruction Set Details

B-147

if ((GPR[rs]127..120 − GPR[rt]127..120) > 0x7F) then
 GPR[rd]127..120 ← 0x7F
else if (0x100 <= (GPR[rs]127..120 − GPR[rt]127..120) < 0x180) then
 GPR[rd]127..120 ← 0x80
else
 GPR[rd]127..120 ← (GPR[rs]127..120 − GPR[rt]127..120)7..0

endif

rs A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

rt B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

− − − − − − − − − − − − − − − −

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
A0
−

B0

A1
−

B1

A2
−

B2

A3
−

B3

A4
−

B4

A5
−

B5

A6
−

B6

A7
−

B7

A8
−

B8

A9
−

B9

A10
−

B10

A11
−

B11

A12
−

B12

A13
−

B13

A14
−

B14

A15
−

B15
rd

 * Saturate to signed byte

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-148

PSUBSH PSUBSHParallel Subtract with Signed Saturation Halfword

MMI
011100

MMI0
001000rt rd PSUBSH

10101rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSUBSH rd, rs, rt

Purpose: To subtract 8 pairs of 16-bit signed integers with saturation in parallel.

Description: rd ← rs − rt

The eight signed halfwords in GPR rt are subtracted from the corresponding eight signed
halfwords in GPR rs in parallel. The results are placed into the corresponding eight
halfwords in GPR rd.

No overflow or underflow exceptions are generated under any circumstances. Results
beyond the range of a signed halfword value are saturated according to the following:

Overflow: 0x7FFF

Underflow: 0x8000

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]15..0 − GPR[rt]15..0) > 0x7FFF) then
 GPR[rd]15..0 ← 0x7FFF
else if (0x10000 <= (GPR[rs]15..0 − GPR[rt]15..0) < 0x18000) then
 GPR[rd]15..0 ← 0x8000
else
 GPR[rd]15..0 ← (GPR[rs]15..0 − GPR[rt]15..0)15..0

endif

if ((GPR[rs]31..16 − GPR[rt]31..16) > 0x7FFF) then
 GPR[rd]31..16 ← 0x7FFF
else if (0x10000 <= (GPR[rs]31..16 − GPR[rt]31..16) < 0x18000) then
 GPR[rd]31..16 ← 0x8000
else
 GPR[rd]31..16 ← (GPR[rs]31..16 − GPR[rt]31..16)15..0

endif

if ((GPR[rs]47..32 − GPR[rt]47..32) > 0x7FFF) then
 GPR[rd]47..32 ← 0x7FFF
else if (0x10000 <= (GPR[rs]47..32 − GPR[rt]47..32) < 0x18000) then
 GPR[rd]47..32 ← 0x8000
else
 GPR[rd]47..32 ← (GPR[rs]47..32 − GPR[rt]47..32)15..0

endif

if ((GPR[rs]63..48 − GPR[rt]63..48) > 0x7FFF) then
 GPR[rd]63..48 ← 0x7FFF
else if (0x10000 <= (GPR[rs]63..48 − GPR[rt]63..48) < 0x18000) then

Appendix B C790-Specific Instruction Set Details

B-149

 GPR[rd]63..48 ← 0x8000
else
 GPR[rd]63..48 ← (GPR[rs]63..48 − GPR[rt]63..48)15..0

endif

if ((GPR[rs]79..64 − GPR[rt]79..64) > 0x7FFF) then
 GPR[rd]79..64 ← 0x7FFF
else if (0x10000 <= (GPR[rs]79..64 − GPR[rt]79..64) < 0x18000) then
 GPR[rd]79..64 ← 0x8000
else
 GPR[rd]79..64 ← (GPR[rs]79..64 − GPR[rt]79..64)15..0

endif

if ((GPR[rs]95..80 − GPR[rt]95..80) > 0x7FFF) then
 GPR[rd]95..80 ← 0x7FFF
else if (0x10000 <= (GPR[rs]95..80 − GPR[rt]95..80) < 0x18000) then
 GPR[rd]95..80 ← 0x8000
else
 GPR[rd]95..80 ← (GPR[rs]95..80 − GPR[rt]95..80)15..0

endif

if ((GPR[rs]111..96 − GPR[rt]111..96) > 0x7FFF) then
 GPR[rd]111..96 ← 0x7FFF
else if (0x10000 <= (GPR[rs]111..96 − GPR[rt]111..96) < 0x18000) then
 GPR[rd]111..96 ← 0x8000
else
 GPR[rd]111..96 ← (GPR[rs]111..96 − GPR[rt]111..96)15..0

endif

if ((GPR[rs]127..112 − GPR[rt]127..112) > 0x7FFF) then
 GPR[rd]127..112 ← 0x7FFF
else if (0x10000 <= (GPR[rs]127..112 − GPR[rt]127..112) < 0x18000) then
 GPR[rd]127..112 ← 0x8000
else
 GPR[rd]127..112 ← (GPR[rs]127..112 − GPR[rt]127..112)15..0

endif

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd A7−B7 A6−B6 A5−B5 A4−B4 A3−B3 A2−B2 A1−B1 A0−B0

rt B7 B6 B5 B4 B3 B2 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

− − − − − − − −

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 * Saturate to signed halfword

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-150

PSUBSW PSUBSWParallel Subtract with Signed Saturation Word

MMI
011100

MMI0
001000rt rd PSUBSW

10001rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSUBSW rd, rs, rt

Purpose: To subtract 4 pairs of 32-bit signed integers with saturation in parallel.

Description: rd ← rs − rt

The four signed words in GPR rt are subtracted from the corresponding four signed words
in GPR rs in parallel. The results are placed into the corresponding four words in GPR rd.

No overflow or underflow exceptions are generated under any circumstances. Results
beyond the range of a signed word value are saturated according to the following:

Overflow: 0x7FFFFFFF

Underflow: 0x80000000

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]31..0 − GPR[rt]31..0) > 0x7FFFFFFF) then
 GPR[rd]31..0 ← 0x7FFFFFFF
else if (0x100000000 <= (GPR[rs]31..0 − GPR[rt]31..0) < 0x180000000) then
 GPR[rd]31..0 ← 0x80000000
else
 GPR[rd]31..0 ← (GPR[rs]31..0 − GPR[rt]31..0)31..0

endif

if ((GPR[rs]63..32 − GPR[rt]63..32) > 0x7FFFFFFF) then
 GPR[rd]63..32 ← 0x7FFFFFFF
else if (0x100000000 <= (GPR[rs]63..32 − GPR[rt]63..32) < 0x180000000) then
 GPR[rd]63..32 ← 0x80000000
else
 GPR[rd]63..32 ← (GPR[rs]63..32 − GPR[rt]63..32)31..0

endif

if ((GPR[rs]95..64 − GPR[rt]95..64) > 0x7FFFFFFF) then
 GPR[rd]95..64 ← 0x7FFFFFFF
else if (0x100000000 <= (GPR[rs]95..64 − GPR[rt]95..64) < 0x180000000) then
 GPR[rd]95..64 ← 0x80000000
else
 GPR[rd]95..64 ← (GPR[rs]95..64 − GPR[rt]95..64)31..0

endif

Appendix B C790-Specific Instruction Set Details

B-151

if ((GPR[rs]127..96 − GPR[rt]127..96) > 0x7FFFFFFF) then
 GPR[rd]127..96 ← 0x7FFFFFFF
else if (0x100000000 <= (GPR[rs]127..96 − GPR[rt]127..96) < 0x180000000) then
 GPR[rd]127..96 ← 0x80000000
else
 GPR[rd]127..96 ← (GPR[rs]127..96 − GPR[rt]127..96)31..0

endif

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rd A3−B3 A2−B2 A1−B1 A0−B0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

− − − −

 * Saturate to signed word

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-152

PSUBUB PSUBUBParallel Subtract with Unsigned Saturation Byte

MMI
011100

MMI1
101000rt rd PSUBUB

11001rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSUBUB rd, rs, rt

Purpose: To subtract 16 pairs of 8-bit unsigned integers with saturation in parallel.

Description: rd ← rs − rt

The sixteen unsigned bytes in GPR rt are subtracted from the corresponding sixteen
unsigned bytes in GPR rs in parallel. The results are placed into the corresponding sixteen
bytes in GPR rd.

No underflow exceptions are generated under any circumstances. Results beyond the
range of an unsigned byte value are saturated according to the following:

Underflow: 0x00

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]7..0 − GPR[rt]7..0) < 0x00) then
 GPR[rd]7..0 ← 0x00
else
 GPR[rd]7..0 ← (GPR[rs]7..0 − GPR[rt]7..0)7..0

endif

if ((GPR[rs]15..8 − GPR[rt]15..8) < 0x00) then
 GPR[rd]15..8 ← 0x00
else
 GPR[rd]15..8 ← (GPR[rs]15..8 − GPR[rt]15..8)7..0

endif

if ((GPR[rs]23..16 − GPR[rt]23..16) < 0x00) then
 GPR[rd]23..16 ← 0x00
else
 GPR[rd]23..16 ← (GPR[rs]23..16 − GPR[rt]23..16)7..0

endif

if ((GPR[rs]31..24 − GPR[rt]31..24) < 0x00) then
 GPR[rd]31..24 ← 0x00
else
 GPR[rd]31..24 ← (GPR[rs]31..24 − GPR[rt]31..24)7..0

endif

if ((GPR[rs]39..32 − GPR[rt]39..32) < 0x00) then
 GPR[rd]39..32 ← 0x00
else
 GPR[rd]39..32 ← (GPR[rs]39..32 − GPR[rt]39..32)7..0

endif

Appendix B C790-Specific Instruction Set Details

B-153

if ((GPR[rs]47..40 − GPR[rt]47..40) < 0x00) then
 GPR[rd]47..40 ← 0x00
else
 GPR[rd]47..40 ← (GPR[rs]47..40 − GPR[rt]47..40)7..0

endif

if ((GPR[rs]55..48 − GPR[rt]55..48) < 0x00) then
 GPR[rd]55..48 ← 0x00
else
 GPR[rd]55..48 ← (GPR[rs]55..48 − GPR[rt]55..48)7..0

endif

if ((GPR[rs]63..56 − GPR[rt]63..56) < 0x00) then
 GPR[rd]63..56 ← 0x00
else
 GPR[rd]63..56 ← (GPR[rs]63..56 − GPR[rt]63..56)7..0

endif

if ((GPR[rs]71..64 − GPR[rt]71..64) < 0x00) then
 GPR[rd]71..64 ← 0x00
else
 GPR[rd]71..64 ← (GPR[rs]71..64 − GPR[rt]71..64)7..0

endif

if ((GPR[rs]79..72 − GPR[rt]79..72) < 0x00) then
 GPR[rd]79..72 ← 0x00
else
 GPR[rd]79..72 ← (GPR[rs]79..72 − GPR[rt]79..72)7..0

endif

if ((GPR[rs]87..80 − GPR[rt]87..80) < 0x00) then
 GPR[rd]87..80 ← 0x00
else
 GPR[rd]87..80 ← (GPR[rs]87..80 − GPR[rt]87..80)7..0

endif

if ((GPR[rs]95..88 − GPR[rt]95..88) < 0x00) then
 GPR[rd]95..88 ← 0x00
else
 GPR[rd]95..88 ← (GPR[rs]95..88 − GPR[rt]95..88)7..0

endif

if ((GPR[rs]103..96 − GPR[rt]103..96) < 0x00) then
 GPR[rd]103..96 ← 0x00
else
 GPR[rd]103..96 ← (GPR[rs]103..96 − GPR[rt]103..96)7..0

endif

if ((GPR[rs]111..104 − GPR[rt]111..104) < 0x00) then
 GPR[rd]111..104 ← 0x00
else
 GPR[rd]111..104 ← (GPR[rs]111..104 − GPR[rt]111..104)7..0

endif

Appendix B C790-Specific Instruction Set Details

B-154

if ((GPR[rs]119..112 − GPR[rt]119..112) < 0x00) then
 GPR[rd]119..112 ← 0x00
else
 GPR[rd]119..112 ← (GPR[rs]119..112 − GPR[rt]119..112)7..0

endif

if ((GPR[rs]127..120 − GPR[rt]127..120) < 0x00) then
 GPR[rd]127..120 ← 0x00
else
 GPR[rd]127..120 ← (GPR[rs]127..120 − GPR[rt]127..120)7..0

endif

rs A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

rt B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

− − − − − − − − − − − − − − − −

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
A0
−

B0

A1
−

B1

A2
−

B2

A3
−

B3

A4
−

B4

A5
−

B5

A6
−

B6

A7
−

B7

A8
−

B8

A9
−

B9

A10
−

B10

A11
−

B11

A12
−

B12

A13
−

B13

A14
−

B14

A15
−

B15
rd

 * Saturate to unsigned byte

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-155

PSUBUH PSUBUHParallel Subtract with Unsigned Saturation Halfword

MMI
011100

MMI1
101000rt rd PSUBUH

10101rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSUBUH rd, rs, rt

Purpose: To subtract 8 pairs of 16-bit unsigned integers with saturation in parallel.

Description: rd ← rs − rt

The eight unsigned halfwords in GPR rt are subtracted from the corresponding eight
unsigned halfwords in GPR rs in parallel. The results are placed into the corresponding
eight halfwords in GPR rd.

No underflow exceptions are generated under any circumstances. Results beyond the
range of an unsigned halfword value are saturated according to the following:

Underflow: 0x0000

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]15..0 − GPR[rt]15..0) < 0x0000) then
 GPR[rd]15..0 ← 0x0000
else
 GPR[rd]15..0 ← (GPR[rs]15..0 − GPR[rt]15..0)15..0

endif

if ((GPR[rs]31..16 − GPR[rt]31..16) < 0x0000) then
 GPR[rd]31..16 ← 0x0000
else
 GPR[rd]31..16 ← (GPR[rs]31..16 − GPR[rt]31..16)15..0

endif

if ((GPR[rs]47..32 − GPR[rt]47..32) < 0x0000) then
 GPR[rd]47..32 ← 0x0000
else
 GPR[rd]47..32 ← (GPR[rs]47..32 − GPR[rt]47..32)15..0

endif

if ((GPR[rs]63..48 − GPR[rt]63..48) < 0x0000) then
 GPR[rd]63..48 ← 0x0000
else
 GPR[rd]63..48 ← (GPR[rs]63..48 − GPR[rt]63..48)15..0

endif

if ((GPR[rs]79..64 − GPR[rt]79..64) < 0x0000) then
 GPR[rd]79..64 ← 0x0000
else
 GPR[rd]79..64 ← (GPR[rs]79..64 − GPR[rt]79..64)15..0

endif

Appendix B C790-Specific Instruction Set Details

B-156

if ((GPR[rs]95..80 − GPR[rt]95..80) < 0x0000) then
 GPR[rd]95..80 ← 0x0000
else
 GPR[rd]95..80 ← (GPR[rs]95..80 − GPR[rt]95..80)15..0

endif

if ((GPR[rs]111..96 − GPR[rt]111..96) < 0x0000) then
 GPR[rd]111..96 ← 0x0000
else
 GPR[rd]111..96 ← (GPR[rs]111..96 − GPR[rt]111..96)15..0

endif

if ((GPR[rs]127..112 − GPR[rt]127..112) < 0x0000) then
 GPR[rd]127..112 ← 0x0000
else
 GPR[rd]127..112 ← (GPR[rs]127..112 − GPR[rt]127..112)15..0

endif

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

rs A7 A6 A5 A4 A3 A2 A1 A0

rd A7−B7 A6−B6 A5−B5 A4−B4 A3−B3 A2−B2 A1−B1 A0−B0

rt B7 B6 B5 B4 B3 B2 B1 B0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

− − − − − − − −

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 * Saturate to unsigned halfword

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-157

PSUBUW PSUBUWParallel Subtract with Unsigned Saturation Word

MMI
011100

MMI1
101000rt rd PSUBUW

10001rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSUBUW rd, rs, rt

Purpose: To subtract 4 pairs of 32-bit unsigned integers with saturation in parallel.

Description: rd ← rs − rt

The four unsigned words in GPR rt are subtracted from the corresponding four unsigned
words in GPR rs in parallel. The results are placed into the corresponding four words in
GPR rd.

No underflow exceptions are generated under any circumstances. Results beyond the
range of an unsigned word value are saturated according to the following:

Underflow: 0x00000000

This instruction operates on 128-bit registers.

Operation:
if ((GPR[rs]31..0 − GPR[rt]31..0) < 0x00000000) then
 GPR[rd]31..0 ← 0x00000000
else
 GPR[rd]31..0 ← (GPR[rs]31..0 − GPR[rt]31..0)31..0

endif

if ((GPR[rs]63..32 − GPR[rt]63..32) < 0x00000000) then
 GPR[rd]63..32 ← 0x00000000
else
 GPR[rd]63..32 ← (GPR[rs]63..32 − GPR[rt]63..32)31..0

endif

if ((GPR[rs]95..64 − GPR[rt]95..64) < 0x00000000) then
 GPR[rd]95..64 ← 0x00000000
else
 GPR[rd]95..64 ← (GPR[rs]95..64 − GPR[rt]95..64)31..0

endif

if ((GPR[rs]127..96 − GPR[rt]127..96) < 0x00000000) then
 GPR[rd]127..96 ← 0x00000000
else
 GPR[rd]127..96 ← (GPR[rs]127..96 − GPR[rt]127..96)31..0

endif

Appendix B C790-Specific Instruction Set Details

B-158

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rd A3−B3 A2−B2 A1−B1 A0−B0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

− − − −

 * Saturate to Unsigned word

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-159

PSUBW PSUBWParallel Subtract Word

MMI
011100

MMI0
001000rt rd PSUBW

00001rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PSUBW rd, rs, rt

Purpose: To subtract 4 pairs of 32-bit integers in parallel.

Description: rd ← rs − rt

The four signed words in GPR rt are subtracted from the corresponding four words in GPR
rs in parallel. The results are placed into the corresponding four words in GPR rd.

No overflow or underflow exceptions are generated under any circumstances.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]31..0 ← (GPR[rs]31..0 − GPR[rt]31..0)31..0

GPR[rd]63..32 ← (GPR[rs]63..32 − GPR[rt]63..32)31..0

GPR[rd]95..64 ← (GPR[rs]95..64 − GPR[rt]95..64)31..0

GPR[rd]127..96 ← (GPR[rs]127..96 − GPR[rt]127..96)31..0

127 96 95 64 63 32 31 0

rs A3 A2 A1 A0

rd A3−B3 A2−B2 A1−B1 A0−B0

rt B3 B2 B1 B0
127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

− − − −

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-160

PXOR PXORParallel Exclusive OR

MMI
011100

MMI2
001001rt rd PXOR

10011rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: PXOR rd, rs, rt

Purpose: To do a bitwise logical EXCLUSIVE OR.

Description: rd ← rs XOR rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical
exclusive OR operation. The result is placed into GPR rd.

This instruction operates on 128-bit registers.

Operation:
GPR[rd]127..0 ← GPR[rs]127..0 xor GPR[rt]127..0

rs A1 A0
127 64 63 0

rd A1 XOR B1 A0 XOR B0
127 64 63 0

rt B1 B0
127 64 63 0

XOR XOR

Exceptions:

None

Appendix B C790-Specific Instruction Set Details

B-161

QFSRV QFSRVQuadword Funnel Shift Right Variable

MMI
011100

MMI1
101000rt rd QFSRV

11011rs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

C790

Format: QFSRV rd, rs, rt

Purpose: To right shift a quadword by a variable number of bits.

Description: rd ← (rs, rt) >> SA

The content of GPR rt is concatenated with the content of GPR rs producing the
intermediate result rs:rt. This value is shifted right by the number of bits specified in the
shift amount register SA. The least significant 16 bytes (i.e. quadword) of the shifted
result is placed into GPR rd.

Restriction:

Note that SA can be loaded only with byte shift values (MTSAB) or halfword shift values
(MTSAH); i.e. with bit shift amounts that are multiples of 8 or 16.

This instruction operates on 128-bit registers.

Operation:
if (SA == 0) then

GPR[rd]127..0 ← GPR[rt]127..0

else
GPR[rd]127..0 ← GPR[rs](SA−1)..0 || GPR[rt]127..SA

endif

Programming Note:

1. A left funnel shift by an amount of s bytes can be done by setting SA to 16-s using
the MTSAB instruction, provided that s is not 0. Similarly, a left funnel shift by s
halfwords can be done by setting SA to 8-s using the MTSAH instruction, provided
that s is not 0. A quick way to perform this computation is as follows:

 // Register %sal contains the left shift amount
 subi %samt, %sal, 1
 mtsab%samt, -1

 // Following QFSRV does a shift left by %sal bytes
 qfsrv %dst, %src1, %src2

2. QFSRV can be used to rotate a 128-bit quantity r by setting both source operands
rs and rt to register r. For example, the following code sequence rotates right the
value in wide register %5 by 3 halfwords(i.e. 48 bits), and deposits the result in
wide register %6.

mtsah %0, 3
qfsrv %6, %5, %5

Appendix B C790-Specific Instruction Set Details

B-162

SQ SQStore Quadword

SQ
011111 rt offsetbase

 31 26 25 21 20 16 15 0

 6 5 5 16

C790

Format: SQ rt, offset (base)

Purpose: To store a quadword to memory.

Description: memory [base + offset] ← rt

The 128-bit quadword in GPR rt is stored in memory at the location specified by the
effective address. The 16-bit signed offset is added to the contents of GPR base to form the
effective address. The least significant four bits of the effective address are masked to zero
(effectively creating an aligned address) before being used to access memory. No address
exceptions due to alignment are possible.

Restrictions:

The effective address doesn’t have to be naturally aligned. The least significant 4 bits of
the effective address are ignored.

Operation:
vAddr ← sign_extend (offset) + GPR[base]31..0

vAddr3..0 = 04

(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
quadword ← GPR[rt]127..0

StoreMemory (uncached, QUADWORD, quadword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

Appendix B C790-Specific Instruction Set Details

B-163

B.5 C790-Specific Instruction Encoding

31 26 0

OpCode

OpCode bits 28..26 Instructions encoded by OpCode field (MMI, LQ, SQ)

bits 0 1 2 3 4 5 6 7
31..29 000 001 010 011 100 101 110 111

0 000 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 COP1 * * BEQL BNEL BLEZL BGTZL

3 011 DADDI DADDIU LDL LDR MMI * LQ SQ

4 100 LB LH LWL LW LBU LHU LWR LWU

5 101 SB SH SWL SW SDL SDR SWR CACHE

6 110 η LWC1 η PREF η LDC1 η LD

7 111 η SWC1 η * η SDC1 η SD

31 26 5 0
OpCode =

MMI function

function bits 2..0 Instructions encoded by function field when OpCode field = MMI

bits 0 1 2 3 4 5 6 7
5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU * * PLZCW * * *

1 001 MMI0 δ MMI2 δ * * * * * *

2 010 MFHI1 MTHI1 MFLO1 MTLO1 * * * *

3 011 MULT1 MULTU1 DIV1 DIVU1 * * * *

4 100 MADD1 MADDU1 * * * * * *

5 101 MMI1 δ MMI3 δ * * * * * *

6 110 PMFHL PMTHL * * PSLLH * PSRLH PSRAH

7 111 * * * * PSLLW * PSRLW PSRAW

Appendix B C790-Specific Instruction Set Details

B-164

31 26 10 6 5 0
OpCode =

MMI function MMI0

function bits 7..6 Instructions encoded by function field when OpCode field = MMI & bit 5..0 = MMI0

bits 0 1 2 3
10..8 00 01 10 11

0 000 PADDW PSUBW PCGTW PMAXW

1 001 PADDH PSUBH PCGTH PMAXH

2 010 PADDB PSUBB PCGTB *

3 011 * * * *

4 100 PADDSW PSUBSW PEXTLW PPACW

5 101 PADDSH PSUBSH PEXTLH PPACH

6 110 PADDSB PSUBSB PEXTLB PPACB

7 111 * * PEXT5 PPAC5

31 26 10 6 5 0
OpCode =

MMI function MMI1

function bits 7..6 Instructions encoded by function field when OpCode field = MMI & bit 5..0 = MMI1

bits 0 1 2 3
10..8 00 01 10 11

0 000 * PABSW PCEQW PMINW

1 001 PADSBH PABSH PCEQH PMINH

2 010 * * PCEQB *

3 011 * * * *

4 100 PADDUW PSUBUW PEXTUW *

5 101 PADDUH PSUBUH PEXTUH *

6 110 PADDUB PSUBUB PEXTUB QFSRV

7 111 * * * *

Appendix B C790-Specific Instruction Set Details

B-165

31 26 10 6 5 0
OpCode =

MMI function MMI2

function bits 7..6 Instructions encoded by function field when OpCode field = MMI & bit 5..0 = MMI2

bits 0 1 2 3
10..8 00 01 10 11

0 000 PMADDW * PSLLVW PSRLVW

1 001 PMSUBW * * *

2 010 PMFHI PMFLO PINTH *

3 011 PMULTW PDIVW PCPYLD *

4 100 PMADDH PHMADH PAND PXOR

5 101 PMSUBH PHMSBH * *

6 110 * * PEXEH PREVH

7 111 PMULTH PDIVBW PEXEW PROT3W

31 26 10 6 5 0
OpCode =

MMI function MMI3

function bits 7..6 Instructions encoded by function field when OpCode field = MMI & bit 5..0 = MMI3

bits 0 1 2 3
10..8 00 01 10 11

0 000 PMADDUW * * PSRAVW

1 001 * * * *

2 010 PMTHI PMTLO PINTEH *

3 011 PMULTUW PDIVUW PCPYUD *

4 100 * * POR PNOR

5 101 * * * *

6 110 * * PEXCH PCPYH

7 111 * * PEXCW *

* This OpCode is reserved for future use. An attempt to execute it causes a
Reserved Instruction exception.

δ This OpCode indicates an instruction class. The instruction word must be
further decoded by examining additional tables that show the values for
another instruction fields.

η This OpCode is reserved for one of the following instructions which are
currently not supported: DMULT, DMULTU, DDIV, DDIVU, LL, LLD, SC,
SCD, LWC2, SWC2. An attempt to execute it causes a Reserved Instruction
exception.

Appendix B C790-Specific Instruction Set Details

B-166

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-1

C. COP0 System Control
Coprocessor Instruction Set Details

This appendix provides a detailed description of the operation of each System Control
Coprocessor (COP0) instruction.

COP0 instructions perform operations specifically on the System Control Coprocessor
registers to manipulate the memory management and exception handing facilities of the
processor.

COP0 Coprocessor instructions are enabled if the processor is in Kernel mode, or if bit 28
(CU[0]) is set in the Status register. Otherwise, executing one of these instructions
generates a Coprocessor Unusable exception. The only exception to this rule are the EI
and the DI instructions which never generate Coprocessor Unusable exceptions.

When the EDI bit in the Status register is set, the EI and DI instructions operate in User,
Supervisor, and Kernel modes independent of whether COP0 coprocessor usable bit
(Status.CU[0]) is set or not. When the EDI bit is cleared EI and DI work as NOPs in User
and Supervisor modes independent of whether COP0 coprocessor usable bit (Status.CU[0])
is set or not, and executes properly in Kernel mode.

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-2

BC0F BC0FBranch on Coprocessor 0 False

COP0
010000 offset

 31 26 25 21 20 16 15 0

 6 5 5 16

BC0
01000

BC0F
00000

MIPS I
Format: BC0F offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and 16-bit offset, shifted left two bits and sign-extended. If coprocessor 0’s
condition signal, as sampled during the previous instruction, is false, then the program
branches to the target address with a delay of one instruction.

Restrictions:

Because the coprocessor 0 condition is externally supplied, there is no way to synchronize
the change/update of the condition and the execution of this instruction.

Operation:
I: tgt_offset ← sign_extend (offset || 02)

condition ← not CPCOND0

I+1: if condition then
PC ← PC + tgt_offset

endif

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-3

BC0FL BC0FLBranch on Coprocessor 0 False Likely

COP0
010000 offset

 31 26 25 21 20 16 15 0

 6 5 5 16

BC0
01000

BC0FL
00010

MIPS II
Format: BC0FL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the contents of
coprocessor 0’s condition signal, as sampled during the previous instruction, is false, the
program branches to the target address with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Restrictions:

Because the coprocessor 0 condition is externally supplied, there is no way to synchronize
the change/update of the condition and the execution of this instruction.

Operation:
I: tgt_offset ← sign_extend (offset || 02)

condition ← not CPCOND0

I+1: if condition then
PC ← PC + tgt_offset

endif

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-4

BC0T BC0TBranch on Coprocessor 0 True

COP0
010000 offset

 31 26 25 21 20 16 15 0

 6 5 5 16

BC0
01000

BC0T
00001

MIPS I
Format: BC0T offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the coprocessor
0’z condition signal is true, then the program branches to the target address, with a delay
of one instruction.

Restrictions:

Because the coprocessor 0 condition is externally supplied, there is no way to synchronize
the change/update of the condition and the execution of this instruction.

Operation:
I: tgt_offset ← sign_extend (offset || 02)

condition ← not CPCOND0

I+1: if condition then
PC ← PC + tgt_offset

endif

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-5

BC0TL BC0TLBranch on Coprocessor 0 True Likely

COP0
010000 offset

 31 26 25 21 20 16 15 0

 6 5 5 16

BC0
01000

BC0TL
00011

MIPS II
Format: BC0TL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the contents of
coprocessor 0’s condition signal, as sampled during the previous instruction, is true, the
program branches to target address with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Restrictions:

Because the coprocessor 0 condition is externally supplied, there is no way to synchronize
the change/update of the condition and the execution of this instruction.

Operation:
I: tgt_offset ← sign_extend (offset || 02)

condition ← not CPCOND0

I+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-6

CACHE CACHECache

CACHE
101111

op
(See table)

offsetbase

 31 26 25 21 20 16 15 0

6 5 5 16

R4000
Format: CACHE op, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to
form a virtual address (VA). The VA is translated to a physical address (PA) through the
memory management unit and its TLB, and the 5-bit OpCode (decode in the table below)
specifies a cache operation for that address, together with the affected cache. Operation of
this instruction on any combination not listed in the table below is undefined. The
operation of this instruction on uncached and uncached accelerated addresses is also
undefined unless it is index-type sub-operation.

Table C-1. CACHE Instruction Op Field Encoding

Mnemonic OpCode CACHE Instruction Target
IXIN 00111 INDEX INVALIDATE Instruction Cache
IXLTG 00000 INDEX LOAD TAG Instruction Cache
IXSTG 00100 INDEX STORE TAG Instruction Cache
IHIN 01011 HIT INVALIDATE Instruction Cache
IFL 01110 FILL Instruction Cache
IXLDT 00001 INDEX LOAD DATA Instruction Cache
IXSDT 00101 INDEX STORE DATA Instruction Cache
BXLBT 00010 INDEX LOAD BTAC BTAC
BXSBT 00110 INDEX STORE BTAC BTAC
BFH 01100 BTAC FLUSH BTAC
BHINBT 01010 HIT INVALIDATE BTAC BTAC
DXWBIN 10100 INDEX WRITE BACK INVALIDATE Data Cache
DXLTG 10000 INDEX LOAD TAG Data Cache
DXSTG 10010 INDEX STORE TAG Data Cache
DXIN 10110 INDEX INVALIDATE Data Cache
DHIN 11010 HIT INVALIDATE Data Cache
DHWBIN 11000 HIT WRITEBACK INVALIDATE Data Cache
DXLDT 10001 INDEX LOAD DATA Data Cache
DXSDT 10011 INDEX STORE DATA Data Cache
DHWOIN 11100 HIT WRITEBACK W/O INVALIDATE Data Cache

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-7

Operation:
vAddr←(offset15)16 || offset15..0 + GPR[base] 31..0

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
CacheOp (op, vAddr, pAddr)

Exceptions:
Coprocessor Unusable exception
TLB Refill
TLB Invalid
Address Error

C.1.1 Notes on the CACHE Instruction Sub-operations

Cache Virtual Address

The CACHE instruction uses the following portions of the Virtual Address (VA) computed
by adding the offset to the base to specify a cache block and way:

• VA[13:6] defines a 64-byte line in the data cache array
• VA[13:6] defines a 64-byte line in the instruction cache array
• In both cases, VA[0] defines the way needed by Index sub-operations

When accessing data in the caches, VA[13:2] is used to read or write a specific data word
in the data cache and VA[13:2] is use to read or write a specific instruction in the
instruction cache.

Cache Physical Address

The CACHE instruction computes the Physical Address (PA) to access memory for cache
Hit Invalidate (I) and Fill (I) sub-operations in the following manner:

• VA[31:6] is computed from the CACHE instruction by adding the offset to the
base and then the result is translated to produce PA[31:6]

The CACHE instruction computes the Physical Address (PA) to access memory for cache
Hit Invalidate (D), Hit Writeback Invalidate (D), Hit Writeback Without Invalidate (D)
sub-operations in the following manner:

• VA[31:6] is computed from the CACHE instruction by adding the offset to the
base and then the result is translated to produce PA[31:6]

BTAC Virtual Address

The CACHE instruction uses the following portions of the Virtual Address (VA) computed
by adding the offset to the base to check if there is an entry that matches the VA:

• VA[31:3] defines an entry in the BTAC

BTAC Index Bits

Since the BTAC is has 64 entries the VA[5:0] computed from the CACHE instruction by
adding the offset to the base is used to index the BTAC.

COP0 Not Usable

If COP0 is not usable (if not in Kernel mode, Status.CU0 must be set for COP0 to be
usable), a Coprocessor unusable exception is taken.

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-8

TLB Exceptions on Cache Operations

TLB Refill and TLB Invalid exceptions can occur only for the following sub-operations:

1. Hit Invalidate (I)

2. Fill (I)

3. Hit Invalidate (D)

4. Hit Writeback Invalidate (D)

5. Hit Writeback without Invalidate (D)

The TLB Modified exception is never generated.

Hit Sub-operation Accesses

A Hit sub-operation accesses the specified cache as a normal data reference, and performs
the specified operation if the cache line contains valid data at the specified physical
address (a hit). The operation is undefined if a CACHE sub-operation hit occurs in both
ways of the cache.

Breakpoint Exception

Breakpoint exceptions can not be generated by any of the CACHE sub-operations (note
that an Instruction Address Breakpoint can still be done on the CACHE instruction itself).

Address Error Exception

None of the CACHE sub-operations will generate an Address Error exception due to
misalignment of the VA created by the CACHE instruction as described above. The
following CACHE sub-operations can generate privilege-type Address Error exceptions:

1. Hit Invalidate (I)

2. Fill (I)

3. Hit Invalidate (D)

4. Hit Writeback Invalidate (D)

5. Hit Writeback without Invalidate (D)

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-9

C.1.2 Sub-Operation Descriptions
Note on Cache Enable Status

All Instruction cache related suboperations perform their function regardless of the value
of the ICE bit of the Config register. (i.e., regardless of whether the Instruction cache is
enabled or not.)

All data cache related suboperations perform their function regardless of the value of the
DCE bit of the Config register. (i.e., regardless of whether the data cache is enabled or
not.)

All BTAC-related suboperations perform their function regardless of the value of the BPE
bit of the Config register.

Op = 00111 Index Invalidate (I)

Index Invalidate (I) sets a line in the instruction cache to Invalid. VA[13:6] defines the
index of the line and VA[0] defines the way to be invalidated. The LRF bit does not change.

Op = 00000 Index Load Tag (I)

Index Load Tag (I) reads the instruction cache tag array fields into the COP0 TagLO
register. VA[13:6] defines the index and VA[0] defines the way of the tag to be read. The
following mapping defines the sub-operation:

• TagLO[4] = LRF bit
• TagLO[5] = VALID bit
• TagLO[31:12] = Tag[19:0]

All other TagLO bits are undefined.

Op = 00100 Index Store Tag (I)

Index Store Tag (I) stores the COP0 TagLO register into the instruction cache tag array.
VA[13:6] defines the index and VA[0] defines the way of the tag to be read. The following
mapping defines the sub-operation:

• LRF bit = TagLO[4]
• VALID bit = TagLO[5]
• Tag[19:0] = TagLO[31:12]

Note that it is perfectly feasible to invalidate the cache line using this sub-operation.

Op = 01011 Hit Invalidate (I)

Hit Invalidate (I) invalidates a line in the instruction cache which matches the PA[31:6]
computed from the CACHE instruction. Both way tags at VA[13:6] are read from the
instruction cache.

If the Valid bit of one of the entries is a 1 and the PA of the CACHE instruction matches
the Tag from that entry of the instruction cache tag array, the Valid bit of the entry is
changed to a 0 (Invalid). The LRF bit does not change. This sub-operation also invalidates
BTAC entries which match VA[31:6].

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-10

Op = 01110 Fill (I)

Fill (I) brings in a cache line from memory and stores it in the instruction cache. The
following sequence is followed:
1. The PA computed from the CACHE instruction is used to fetch the cache line from
memory.
2. The line is loaded into the cache line addressed by VA[13:6] and the way of cache is
defined by the rules of the LRF bits.
3. The corresponding instruction cache tag is loaded with the PFN and the entry is
validated.

Op = 00001 Index Load Data (I)

Index Load Data (I) reads a single instruction from the instruction cache data array and
stores it into the COP0 TagLO and TagHI registers. VA[13:2] defines the index and VA[0]
defines the way of the instruction cache to be read. The following mapping defines the sub-
operation:

• TagLO[31:0] = 32-bit instruction
• TagHI[3:0] = SteeringBits[3:0]
• TagHI[5:4] = BHT[1:0]

All other TagHI bits are undefined.

Op = 00101 Index Store Data (I)

Index Store Data (I) stores the COP0 TagLO and TagHI registers into the instruction
cache data array.

VA[13:2] defines the index and VA[0] defines the way of the instruction cache to be
written. The following mapping defines the sub-operation:

• 32-bit instruction = TagLO[31:0]
• SteeringBits[3:0] = TagHI[3:0]
• BHT[1:0] = TagHI[5:4]

The BHT[1:0] bits are associated with the instruction pair at VA[13:3]. This sub-operation
invalidates all BTAC entries.

Op = 00010 Index Load BTAC (B)

Index Load BTAC (B) reads a single BTAC entry and stores it into the COP0 TagLO
registers. VA[5:0] defines the index of the BTAC entry to be read. The following mapping
defines the sub-operation:

• TagLO[0] = Valid Bit
• TagLO[31:3] = FetchAddress[28:0]
• TagHI[31:2] = TargetAddress[29:0]

All other TagLO and TagHI bits are undefined.

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-11

Op = 00110 Index Store BTAC (B)

Index Store BTAC (B) stores the COP0 TagLO and TagHI registers into a single BTAC
entry. VA[5:0] defines the index of the BTAC entry to be written. The following mapping
defines the sub-operation:

• Valid Bit = TagLO[0]
• FetchAddress[28:0] = TagLO[31:3]
• TargetAddress[29:0] = TagHI[31:2]

Op = 01100 BTAC Flush (B)

This sub-operation invalidates the complete BTAC by writing a 0 into the valid bits of all
the entries of the BTAC.

Op = 01010 Hit Invalidate BTAC (B)

Hit Invalidate BTAC (B) invalidates an entry in the BTAC which matches the VA[31:3]
computed from the CACHE instruction. If the VA[31:3] matches an entry in the BTAC and
its Valid bit is equal to 1 then the Valid bit is changed to a 0. The result is undefined if
there are plural of entries that matches the VA.

Op = 10100 Index Writeback Invalidate (D)

Index Writeback Invalidate (D) sub-operation sets a cache line in the data cache to Invalid
and writes back any dirty data to the CPU bus. VA[13:6] defines the index and VA[0]
defines the way of the data cache line to be invalidated. The invalidation takes place by
writing a 0 to the Valid bit. The LRF bit does not change.

The PA where the cache line will be written to is calculated by appending VA[11:6] to the
20-bit PFN field from the data cache tag to form PA[31:6]. This address represents a
cache line address.

Op = 10000 Index Load Tag (D)

Index Load Tag (D) reads the data cache tag array fields into the COP0 TagLO register.
VA[13:6] defines the index and VA[0] defines the way of the tag to be read. The following
mapping defines the sub-operation:

• TagLO[3] = Lock bit
• TagLO[4] = LRF bit
• TagLO[5] = Valid bit
• TagLO[6] = Dirty bit
• TagLO[31:12] = Tag[31:12]

All other TagLO bits are undefined.

Op = 10010 Index Store Tag (D)

Index Store Tag (D) stores the COP0 TagLO register into the data cache tag array.
VA[13:6] defines the index and VA[0] defines the way of the tag to be written. The
following mapping defines the sub-operation:

• Lock bit = TagLO[3]
• LRF bit = TagLO[4]
• Valid bit = TagLO[5]
• Dirty bit = TagLO[6] & TagLO[5]
• Tag[19:0] = TagLO[31:12]

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-12

Op = 10110 Index Invalidate (D)

Index Invalidate (D) sets a line in the data cache to Invalid. VA[13:6] defines the index of
the line and VA[0] defines the way to be invalidated. The Lock bit, Dirty bit, and Valid bit
are changed to zero. The LRF bit doesn’t change.

Op = 11010 Hit Invalidate (D)

Hit Invalidate (D) invalidates an entry in the data cache which matches the PA computed
from the CACHE instruction. Both way tags at VA[13:6] are read from the data cache.

If the Valid bit of the entry is one and the PA of the CACHE instruction matches the Tag
from the data cache tag array, the Valid bit of the entry is changed to zero (Invalid). The
Lock bit and Dirty bit are also changed to zero. The LRF bit does not change.

Op = 11000 Hit Writeback Invalidate (D)

Hit Writeback Invalidate (D) sub-operation invalidates an entry in the data cache which
matches the PA computed from the CACHE instruction. Additionally it writes back any
dirty data to the CPU bus. Both way tags at VA[13:6] are read from the data cache. The
Lock bit, Dirty bit, and Valid bit are changed to zero. The LRF bits are not modified.

If the PA computed from the CACHE instruction matches the tag from the data cache tag
array and the Valid bit is 1 then the Valid bit is changed to 0. Further more if the Dirty
bit is 1 then the cache line is written to the physical address calculated by appending
VA[11:6] to the 20-bit PFN field from the data cache tag to form PA[31:6]. This address
represents a cache line physical address.

Op = 10001 Index Load Data (D)

Index Load Data (D) reads a single word from the data cache data array and stores it into
the COP0 TagLO register. VA[13:2] defines the index and VA[0] defines the way of the
data cache to be read. The following mapping defines the sub-operation:

• TagLO[31:0] = 32-bit data

Op = 10011 Index Store Data (D)

Index Store Data (D) stores the COP0 TagLO register into the data cache data array.
VA[13:2] defines the index and VA[0] defines the way of the data cache to be written. The
following mapping defines the sub-operation:

• 32-bit data = TagLO[31:0]

Op = 11100 Hit Writeback Without Invalidate (D)

Hit Writeback Without Invalidate (D) sub-operation writes back any dirty data to the
CPU bus. Both way tags at VA[13:6] are read from the data cache. The Dirty bit is
changed to zero. The LRF bits are not modified.

If the PA computed from the CACHE instruction matches the tag from the data cache tag
array and the Valid and Dirty bits are 1 then the cache line is written to the physical
address calculated by appending VA[11:6] to the 20-bit PFN field from the data cache tag
to form PA[31:6]. This address represents a cache line physical address.

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-13

Programming Notes:

For all CACHE sub-operations which operate on the instruction cache the following
programming restrictions have to be followed:

1. A sequence of CACHE instructions has to be directly preceded and followed by a
SYNC.P instruction.

2. Each individual FILL sub-operation has to be followed by a SYNC.L instruction.

For all CACHE sub-operations which operate on the data cache the following
programming restrictions have to be followed:

1. A sequence of CACHE instructions have to be directly preceded and followed by a
SYNC.L instruction.

2. Each of the three WRITEBACK sub-operations have to be individually followed by a
SYNC.L instruction.

For all CACHE sub-operations which operate on the BTAC the following programming
restrictions have to be followed:

1. A sequence of CACHE instructions have to be directly preceded and followed by a
SYNC.P instruction.

C.1.3 Updates of Data Tag Status Bits
The following table summarizes the updates of Data Tag status bits for various Cache sub-
operations. The values in the table for Hit Writeback Invalidate, Hit Writeback Without
Invalidate, and Hit Invalidate only apply if there is a hit in the data cache. If there is no
hit, the status bits are unchanged.

Table C-2. Data Tag Status Bit Modifications

Cache Instruction LRF Bit Lock Bit Dirty Bit Valid Bit
Index Load Data unchanged unchanged unchanged unchanged
Index Store Data unchanged unchanged unchanged unchanged
Index Load Tag unchanged unchanged unchanged unchanged
Index Store Tag loaded loaded loaded loaded
Index Writeback Invalidate unchanged cleared cleared cleared
Index Invalidate unchanged cleared cleared cleared
Hit Invalidate unchanged cleared cleared cleared
Hit Writeback Invalidate unchanged cleared cleared cleared
Hit Writeback Without Invalidate unchanged unchanged cleared unchanged

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-14

DI DIDisable Interrupt

COP0
010000

DI
111001

0
000 0000 0000 0000

C0
10000

 31 26 25 21 20 6 5 0

 6 5 15 6

C790
Format: DI

Description:

DI instruction clears the EIE bit in the Status register and disable all interrupts (except
NMI and SIO). When the EIE bit is cleared, all interrupts are disabled regardless of the
value of IE bit in the Status register.

When the EDI bit in the Status register is set, the DI instruction operates in User,
Supervisor, and Kernel modes independent of whether COP0 coprocessor usable bit
(Status.CU[0]) is set or not. When this bit is cleared EI and DI work as NOPs in User and
Supervisor modes independent of whether COP0 coprocessor usable bit (Status.CU[0]) is
set or not, and executes properly in Kernel mode.

Operation:
If (Status.EDI = 1) || (Status.EXL = 1) || (Status.ERL = 1) || (Status.KSU = 002) then

Status.EIE ← 0
endif

Exceptions:

None

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-15

EI EIEnable Interrupt

COP0
010000

EI
111000

0
000 0000 0000 0000

C0
10000

 31 26 25 21 20 6 5 0

 6 5 15 6

C790
Format: EI

Description:

EI instruction sets the EIE bit in the Status register. When the EIE bit is set, all
interrupts are enabled if the IE bit in the Status register is 1, EXL bit is 0, and ERL bit is
0.

When the EDI bit in the Status register is set, the EI instruction operates in User,
Supervisor, and Kernel modes independent of whether COP0 coprocessor usable bit
(Status.CU[0]) is set or not. When this bit is cleared EI and DI work as NOPs in User and
Supervisor modes independent of whether COP0 coprocessor usable bit (Status.CU[0]) is
set or not, and executes properly in Kernel mode.

Operation:
If (Status.EDI = 1) || (Status.EXL = 1) || (Status.ERL = 1) || (Status.KSU = 002) then

Status.EIE ← 1
endif

Exceptions:
None

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-16

ERET ERETException Return

COP0
010000

ERET
011000

0
000 0000 0000 0000

C0
10000

 31 26 25 21 20 6 5 0

 6 5 15 6

R4000
Format: ERET

Description:

ERET is the instruction for returning from an interrupt, exception, or error trap. Unlike a
branch or jump instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing a Level 2 exception, then load the PC from the ErrorEPC and
clear the ERL bit of the Status register (bit 2 in Status register). Otherwise (ERL = 0),
load the PC from the EPC, and clear the EXL bit of the Status register (bit 1 in Status
register).

Operation:
if Status.ERL = 1 then

PC ← ErrorEPC
Status.ERL ← 0

else
PC ← EPC
Status.EXL ← 0

endif

Exceptions:

Coprocessor Unusable exception

Implementation Note:

ERET flushes the execution pipelines of the CPU before fetching the instruction from the
target. Any pending loads, stores, ongoing multiplies, divides, multiply-accumulates and
COP1 instructions are not flushed.

Programming Notes:

Any Reserved Instruction must not be placed in a branch delay slot just after ERET
instruction. Please pay careful attention if any instruction is placed in the branch delay
slot, because the instruction in the branch delay slot may be executed incompletely before
flushing. It is commended that NOP is placed in the branch delay slot.

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-17

MFBPC MFBPCMove from Breakpoint Control Register

COP0
010000

0
0000 0000rt Debug

11000
MF0

00000

 31 26 25 21 20 16 15 11 10 3 2 0

6 5 5 5 8 3

MFBPC
000

C790
Format: MFBPC rt

Description:

The contents of the Breakpoint Control register of the COP0 are loaded into general
register rt.

Operation:
data ← CPR[0, Breakpoint Control]
GPR[rt] ← (data31)32 || data31..0

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-18

MFC0 MFC0Move from System Control Coprocessor

COP0
010000

0
000 0000 0000rt rdMF0

00000

 31 26 25 21 20 16 15 11 10 0

 6 5 5 5 11

R4000
Format: MFC0 rt, rd

Description:

The contents of coprocessor register rd of the COP0 are loaded into general register rt.

Operation:
data ← CPR[0, rd]
GPR[rt] ← (data31)32 || data31..0

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-19

 31 26 25 21 20 16 15 11 10 3 2 0

MFDAB MFDABMove from Data Address Breakpoint register

COP0
010000 rt Debug

11000
MF0

00000
0

0000 0000
6 5 5 5 8 3

MFDAB
100

C790
Format: MFDAB rt

Description:

The contents of Data Address Breakpoint register of the COP0 are loaded into general
register rt.

Operation:
data ← CPR[0, Data Address Breakpoint]
GPR[rt] ← (data31)32 || data31..0

Exceptions:
Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-20

 31 26 25 21 20 16 15 11 10 3 2 0

MFDABM MFDABMMove from Data Address Breakpoint Mask
Register

COP0
010000 rtMF0

00000
Debug
11000

0
0000 0000

6 5 5 5 8 3

MFDABM

101

C790
Format: MFDABM rt

Description:

The contents of Data Address Breakpoint Mask register of the COP0 are loaded into
general register rt.

Operation:
data ← CPR[0, Data Address Breakpoint Mask]
GPR[rt] ← (data31)32 || data31..0

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-21

 31 26 25 21 20 16 15 11 10 3 2 0

MFDVB MFDVBMove from Data value Breakpoint Register

COP0
010000 rtMF0

00000
Debug
11000

0
0000 0000

6 5 5 5 8 3

MFDVB
110

C790
Format: MFDVB rt

Description:

The contents of Data Value Breakpoint register of the COP0 are loaded into general
register rt.

Operation:
data ← CPR[0, Data Value Breakpoint]
GPR[rt] ← (data31)32 || data31..0

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-22

MFDVBM MFDVBMMove from Data Value Breakpoint Mask
Register

COP0
010000 rtMF0

00000

 31 26 25 21 20 16 15 11 10 3 2 0

Debug
11000

0
0000 0000

6 5 5 5 8 3

MFDVBM

111

C790
Format: MFDVBM rt

Description:

The contents of Data Value Breakpoint Mask register of the COP0 are loaded into general
register rt.

Operation:
data ← CPR[0, Data Value Breakpoint Mask]
GPR[rt] ← (data31)32 || data31..0

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-23

MFIAB MFIABMove from Instruction Address Breakpoint
Register

COP0
010000 rtMF0

00000

 31 26 25 21 20 16 15 11 10 3 2 0

Debug
11000

0
0000 0000

6 5 5 5 8 3

MFIAB
010

C790
Format: MFIAB rt

Description:

The contents of Instruction Address Breakpoint register of the COP0 are loaded into
general register rt.

Operation:
data ← CPR[0, Instruction Address Breakpoint]
GPR[rt] ← (data31)32 || data31..0

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-24

C790
Format: MFIABM rt

Description:

The contents of Instruction Address Breakpoint Mask register of the COP0 are loaded into
general register rt.

Operation:
data ← CPR[0, Instruction Address Breakpoint Mask]
GPR[rt] ← (data31)32 || data31..0

Exceptions:

Coprocessor Unusable exception

 31 26 25 21 20 16 15 11 10 3 2 0

MFIABM MFIABMMove from Instruction Address Breakpoint
Mask Register

COP0
010000 rtMF0

00000
Debug
11000

0
0000 0000

6 5 5 5 8 3

MFIABM

011

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-25

MFPC MFPCMove from Performance Counter

COP0
010000 rt reg 1Perf

11001
0

00000
MF0

00000

 31 26 25 21 20 16 15 11 10 6 5 1 0

6 5 5 5 5 5 1

C790
Format: MFPC rt, reg

Description:

The contents of Performance Counter register of the COP0 are loaded into general register
rt.

The reg OpCode bit indicates the number of Performance Counters. Only register 0 and 1
are valid in the C790 implementation.

Operation:
data ← CPR[0, Performance Counter (reg)]
GPR[rt] ← (data31)32 || data31..0

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-26

MFPS MFPSMove from Performance Event Specifier

COP0
010000 rt reg 0Perf

11001
0

00000
MF0

00000

 31 26 25 21 20 16 15 11 10 6 5 1 0

6 5 5 5 5 5 1

C790
Format: MFPS rt, reg

Description:

The contents of Performance Control register of the COP0 are loaded into general register
rt.

The reg OpCode bit indicates the number of Performance Counter Control registers. Only
register 0 is valid in the C790 implementation.

Operation:
data ← CPR[0, Performance Control (reg)]
GPR[rt] ← (data31)32 || data31..0

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-27

MTBPC MTBPCMove to Breakpoint Control Register

COP0
010000 rtMT0

00100

 31 26 25 21 20 16 15 11 10 3 2 0

Debug
11000

0
0000 0000

6 5 5 5 8 3

MTBPC
000

C790
Format: MTBPC rt

Description:

The contents of general register rt are loaded into Breakpoint Control register of COP0.

Operation:
data ← GPR[rt]
CPR[0, Breakpoint Control] ← data

Programming Notes:

All MTBPC instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-28

MTC0 MTC0Move to System Control Coprocessor

COP0
010000

0
000 0000 0000rt rdMT0

00100

 31 26 25 21 20 16 15 11 10 0

 6 5 5 5 11

R4000
Format: MTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of COP0.

Operation:
data ← GPR[rt]
CPR[0, rd] ← data

Programming Notes:

1. All MTC0 instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update. There is one exception to this rule:

a) An MTC0 instruction which loads the EntryHi COP0 register can be followed by
a TLBWI or a TLBWR instruction without having an intervening SYNC.P
instruction. This special case is handled by a hardware interlock.

2. It is required that the MTC0 instruction to EntryHi register MUST be executed either
from unmapped space or from global mapped space (mapped space with a TLB entry
which has the G bit set). Furthermore, the BTAC is flushed whenever the EntryHi
register is updated.

3. Modifying CONFIG.K0 via a MTC0 instruction should not occur from kseg0 space.

4. A SYNC.L instruction is needed before executing a MTC0 instruction which modifies
CONFIG.NBE or CONFIG.DCE.

5. Updating the performance counter registers via a MTC0 instruction while the
performance counters are enabled will result in undefined counter values.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-29

MTDAB MTDABMove to Data Address Breakpoint Register

COP0
010000 rtMT0

00100

 31 26 25 21 20 16 15 11 10 3 2 0

Debug
11000

0
0000 0000

6 5 5 5 8 3

MTDAB
100

C790
Format: MTDAB rt

Description:

The contents of general register rt are loaded into Data Address Breakpoint register of COP0.

Operation:
data ← GPR[rt]
CPR[0, Data Address Breakpoint] ← data

Programming Notes:

All MTDAB instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-30

MTDABM MTDABMMove to Data Address Breakpoint Mask
Register

COP0
010000 rtMT0

00100

 31 26 25 21 20 16 15 11 10 3 2 0

Debug
11000

0
0000 0000

6 5 5 5 8 3

MTDABM

101

C790
Format MTDABM rt

Description:

The contents of general register rt are loaded into Data Address Breakpoint Mask register of
COP0.

Operation:
data ← GPR[rt]
CPR[0, Data Address Breakpoint Mask] ← data

Programming Notes:

All MTDABM instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-31

MTDVB MTDVBMove to Data Value Breakpoint Register

COP0
010000 rtMT0

00100

 31 26 25 21 20 16 15 11 10 3 2 0

Debug
11000

0
0000 0000

6 5 5 5 8 3

MTDVB
110

C790
Format: MTDVB rt

Description:

The contents of general register rt are loaded into Data Value Breakpoint register of COP0.

Operation:
data ← GPR[rt]
CPR[0, Data Value Breakpoint] ← data

Programming Notes:

All MTDVB instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-32

 31 26 25 21 20 16 15 11 10 3 2 0

MTDVBM MTDVBMMove to Data Value Breakpoint Mask
Register

COP0
010000 rtMT0

00100
Debug
11000

0
0000 0000

6 5 5 5 8 3

MTDVBM

111

C790
Format: MTDVBM rt

Description:

The contents of general register rt are loaded into Data Value Breakpoint Mask register of
COP0.

Operation:
data ← GPR[rt]
CPR[0, Data Value Breakpoint Mask] ← data

Programming Notes:

All MTDVBM instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-33

MTIAB MTIABMove to Instruction Address Breakpoint
Register

COP0
010000 rtMT0

00100

 31 26 25 21 20 16 15 11 10 3 2 0

Debug
11000

0
0000 0000

6 5 5 5 8 3

MTIAB
010

C790
Format: MTIAB rt

Description:

The contents of general register rt are loaded into Instruction Address Breakpoint register of
COP0.

Operation:
data ← GPR[rt]
CPR[0, Instruction Address Breakpoint] ← data

Programming Notes:

All MTIAB instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-34

 31 26 25 21 20 16 15 11 10 3 2 0

Debug
11000

0
0000 0000

6 5 5 5 8 3

MTIABM

011

MTIABM MTIABMMove to Instruction Address Mask
Breakpoint Register

COP0
010000 rtMT0

00100

C790
Format: MTIABM rt

Description:

The contents of general register rt are loaded into Instruction Address Mask Breakpoint
register of COP0.

Operation:
data ← GPR[rt]
CPR[0, Instruction Address Mask Breakpoint] ← data

Programming Notes:

All MTIABM instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-35

MTPC MTPCMove to Performance Counter

COP0
010000 rt reg 1Perf

11001
0

00000
MT0

00100

 31 26 25 21 20 16 15 11 10 6 5 1 0

6 5 5 5 5 5 1

C790
Format: MTPC rt, reg

Description:

The contents of general register rt are loaded into Performance Counter register.

The reg OpCode bit indicates the number of Performance Counters. Only register 0 and 1
are valid in the C790 implementation.

Operation:
data ← GPR[rt]
CPR[0, Performance Counter (reg)] ← data

Programming Notes:

All MTPC instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update.

Updating the performance counters via a MTPC instruction while the performance
counters are enabled will result in undefined counter values.

Exceptions:

Coprocessor unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-36

MTPS MTPSMove to Performance Event Specifier

COP0
010000 rt reg 0Perf

11001
0

00000
MT0

00100

 31 26 25 21 20 16 15 11 10 6 5 1 0

6 5 5 5 5 5 1

C790
Format: MTPS rt, reg

Description:

The contents of general register rt are loaded into Performance Control register.

The reg OpCode bit indicates the number of Performance Control registers. Only register
0 is valid in the C790 implementation.

Operation:
data ← GPR[rt]
CPR[0, Performance Control (reg)] ← data

Programming Notes:

All MTPS instructions MUST be followed by a SYNC.P instruction as a barrier to
guarantee COP0 register update.

Exceptions:

Coprocessor unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-37

TLBP TLBPProbe TLB for Matching Entry

COP0
010000

TLBP
001000

0
000 0000 0000 0000

C0
10000

 31 26 25 21 20 6 5 0

 6 5 15 6

R4000
Format: TLBP

Description:

The Index register is loaded with the address of the TLB entry whose contents match the
contents of the EntryHi register. If no TLB entry matches, the high-order bit of the Index
register is set to 1. Note that the virtual address in the EntryHi register is masked with
the corresponding mask field of the TLB entry prior to the comparison.

The architecture does not specify the operation of memory references associated with the
instruction immediately after a TLBP instruction, nor is the operation specified if more
than one TLB entry matches.

Operation:
Index ←1 || 025 || undefined6

for i in 0..TLBEnteries-1
if (TLB[i]95..77 = ((not TLB[i]127..109) and EntryHi31..13)) and (TLB[i]76 or

(TLB[i]71..64 = EntryHi7..0)) then
Index ← 026 || i5..0

endif
endfor

Programming Notes:

The TLBP instruction MUST be immediately followed by SYNC.P or ERET instruction

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-38

TLBR TLBRRead Indexed TLB Entry

COP0
010000

TLBR
000001

0
000 0000 0000 0000

C0
10000

 31 26 25 21 20 6 5 0

 6 5 15 6

R4000
Format: TLBR

Description:

The EntryHi, EntryLo, and PageMask registers are loaded with the contents of the TLB
entry pointed at by the contents of the TLB Index register.

The G bit (which controls ASID matching) read from the TLB is written into both of the
EntryLo0 and EntryLo1 registers. Depending the value in PageMask register used for a
TLB write instruction, the value read out from TLB may not retrieve what was originally
written. See Description for TLBWI/TLBWR instruction.

Operation:
PageMask ← TLB[Index5..0]127..96

EntryHi ← (TLB[Index5..0]95..77 || 05 || TLB[Index5..0]71..64) and (not TLB[Index5..0]127..96)
EntryLo0 ← TLB[Index5..0]63..33 || TLB[Index5..0]76

EntryLo1 ← TLB[Index5..0]31..1 || TLB[Index5..0]76

Programming Notes:

The TLBR instruction MUST be executed from either unmapped space or global mapped
space (mapped space with a TLB entry which has the G bit set).

The TLBR instruction MUST be immediately followed by SYNC.P or ERET instruction.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-39

TLBWI TLBWIWrite Index TLB Entry

COP0
010000

TLBWI
000010

0
000 0000 0000 0000

C0
10000

 31 26 25 21 20 6 5 0

 6 5 15 6

R4000
Format: TLBWI

Description:

The TLB entry pointed at by the contents of the TLB Index register is loaded with the
contents of the PageMask, EntryHi, EntryLo0 and EntryLo1 registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and
EntryLo1 registers. The virtual address in the EntryHi register is modified by the Mask
field of the PageMask register before being written into the TLB.

The operation is invalid (and the results are unspecified) if contents of the TLB Index
register are greater than the number of TLB entries in the processor.

In the C790 processor, a TLB write instruction is used to write the whole page frame
number from the EntryLo registers to the TLB entry. Depending on the page size specified
in the corresponding PageMask register, the lower bits of PFN may not be used for
address translation and lower bits of VPN2 in EntryHi register which is masked by the
content of PageMask register are forced to zeros during a TLB write. This does not affect
TLB address translation, however, a TLB read may not retrieve what was originally
written.

Operation:
TLB[Index5..0] ←

PageMask || ((EntryHi31..13 || (EntryLo00 and EntryLo10) || EntryHi11..0) and
(not PageMask)) || EntryLo031..1 || 0 || EntryLo131..1 || 0

Programming Notes:

The TLBWI instruction MUST be executed from either unmapped space or global mapped
space (mapped space with a TLB entry which has the G bit set).

The TLBWI instruction MUST be followed by a ERET or a SYNC.P instruction to insure
TLB update.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-40

TLBWR TLBWRWrite Random TLB Entry

COP0
010000

TLBWR
000110

0
000 0000 0000 0000

C0
10000

 31 26 25 21 20 6 5 0

 6 5 15 6

R4000
Format: TLBWR

Description:

The TLB entry pointed at by the contents of the TLB Random register is loaded with the
contents of the PageMask, EntryHi, EntryLo0 and EntryLo1 registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and
EntryLo1 registers. The virtual address in the EntryHi register is modified by the Mask
field of the PageMask register before being written into the TLB.

In the C790 processor, a TLB write instruction is used to write the whole page frame
number from the EntryLo registers to the TLB entry. Depending on the page size specified
in the corresponding PageMask register, the lower bits of PFN may not be used for
address translation and lower bits of VPN2 in EntryHi register which is masked by the
content of PageMask register are forced to zeros during a TLB write. This does not affect
TLB address translation, however, a TLB read may not retrieve what was originally
written.

Operation:
TLB[Random5..0] ←

PageMask || ((EntryHi31..13 || (EntryLo00 and EntryLo10) || EntryHi11..0) and
(not PageMask)) || EntryLo031..1 || 0 || EntryLo131..1 || 0

Programming Notes:

The TLBWR instruction MUST be executed from either unmapped space or global mapped
space (mapped space with a TLB entry which has the G bit set).

The TLBWR instruction MUST be followed by a ERET or a SYNC.P instruction to insure
TLB update.

Exceptions:

Coprocessor Unusable exception

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-41

C.2 COP0 Instruction Encoding

31 26 0
OpCode

OpCode bits 28..26 Instructions encoded by OpCode field (COP0, CACHE)
bits 0 1 2 3 4 5 6 7

31..29 000 001 010 011 100 101 110 111
0 000 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ
1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 010 COP0 δ COP1 * * BEQL BNEL BLEZL BGTZL
3 011 DADDI DADDIU LDL LDR MMI * LQ SQ
4 100 LB LH LWL LW LBU LHU LWR LWU
5 101 SB SH SWL SW SDL SDR SWR CACHE
6 110 η LWC1 η PREF η LDC1 η LD

7 111 η SWC1 η * η SDC1 η SD

31 26 25 21 0
OpCode =

COP0
rs

rs bits 23..21 Instructions encoded by rs field when OpCode field = COP0
 bits 0 1 2 3 4 5 6 7

25..24 000 001 010 011 100 101 110 111
0 00 MF0 * * * MT0 * * *
1 01 BC0 δ * * * * * * *
2 10 C0 δ * * * * * * *
3 11 * * * * * * * *

31 26 25 21 20 16 15 11 10 3 2 0
OpCode =

COP0
rs =

MF0 or MT0
rd =

Debug•
function

function bits 2..0 Instructions encoded by function field when OpCode field = COP0 & rd field = Debug
0 1 2 3 4 5 6 7

rs field 000 001 010 011 100 101 110 111
MF0 MFBPC ϕ MFIAB MFIABM MFDAB MFDABM MFDVB MFDVBM
MT0 MTBPC ϕ MTIAB MTIABM MTDAB MTDABM MTDVB MTDVBM

31 26 25 21 20 16 15 11 10 1 0
OpCode =

COP0
rs =

MF0 or MT0
rd = Perf• function

function bits 0 Instructions encoded by function field when OpCode field = COP0 & rd field = Perf
rs field 0 1
MF0 MFPS MFPC
MT0 MTPS MTPC

• Debug and Perf are the CP0 register names.
 Debug = 11000 (24), Perf = 11001 (25)

Appendix C COP0 System Control Coprocessor Instruction Set Details

C-42

31 26 25 21 20 16 0
OpCode =

COP0
rs =BC0 rt

rt bits 18..16 Instructions encoded by rt field when OpCode field = COP0 & rs field = BC0
 bits 0 1 2 3 4 5 6 7

20..19 000 001 010 011 100 101 110 111
0 00 BC0F BC0T BC0FL BC0TL * * * *
1 01 * * * * * * * *
2 10 * * * * * * * *
3 11 * * * * * * * *

31 26 25 21 5 0
OpCode =

COP0
rs =
C0

function

function bits 2..0 Instructions encoded by function field when OpCode field = COP0 & rs field = C0
 bits 0 1 2 3 4 5 6 7
5..3 000 001 010 011 100 101 110 111

0 000 ϕ TLBR TLBWI ϕ ϕ ϕ TLBWR ϕ
1 001 TLBP ϕ ϕ ϕ ϕ ϕ ϕ ϕ
2 010 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
3 011 ERET ϕ ϕ ϕ ϕ ϕ ϕ ϕ
4 100 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
5 101 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
6 110 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
7 111 EI DI ϕ ϕ ϕ ϕ ϕ ϕ

∗ This OpCode is reserved for future use. An attempt to execute it causes a
Reserved Instruction exception.

ϕ This OpCode is reserved for future use. An attempt to execute it produces an
undefined result. The result may be a Reserved Instruction exception but
this is not guaranteed.

δ This OpCode indicates an instruction class. The instruction word must be
further decoded by examining additional tables that show the values for
another instruction field.

η This OpCode is reserved for one of the following instructions which are
currently not supported: DMULT, DMULTU, DDIV, DDIVU, LL, LLD, SC,
SCD, LWC2, SWC2. An attempt to execute it causes a Reserved Instruction
exception.

Appendix D COP1 (FPU) Instruction Set Details

D-1

D. COP1 (FPU) Instruction Set Details

This appendix provides a detailed description of each of the COP1 coprocessor instructions.
COP1 is implemented as a floating point unit (FPU).

The instruction descriptions provide:

• a bit by bit field definition of the instruction word signifying that instruction
• a verbal description of the operation performed by the instruction
• pseudo-code identifying the entire sphere of influence of the instruction in terms

of operand dependency and the state (s) of the processor changed.

Omission of any/all states is taken to mean that the same have not changed by the act of
execution of the instruction under description.

Appendix D COP1 (FPU) Instruction Set Details

D-2

D.1 Conventions Used in This Chapter

D.1.1 Instruction Description Notation and Functions
The Operation sections of the instruction descriptions use a high-level language notation,
or pseudocode, to describe the instruction’s operations. Symbols, functions, and structures
used in the Operation sections are described here.

The notation FPR as used here refers to the 32 floating-point registers FPR0 through
FPR31 of the FPU.

D.1.2 Pseudocode Language Statement Execution
Each of the high-level language statements in an operation description is executed in
sequential order (as modified by conditional and loop constructs).

D.1.3 Pseudocode Symbols
Special symbols used in the notation are described in Appendix A.

D.2 Definitions for Pseudocode Functions Used in Operation
Descriptions

A variety of functions are used in the pseudocode descriptions to make the pseudocode
more readable and also to abstract implementation-specific behavior. These functions are
defined in Appendix A; in addition, certain COP1 FPU-specific functions are described in
the following section. The following pseudocode notation is used in functions in the
descriptions of floating-point operations:

Pseudocode Function Meaning
StoreFPR (fpr, value) FPR[fpr] ← value
ConvertFmt (value, fmt1, fmt2) The value in the format fmt1 is converted to a

value in the format fmt2.
Negate (value) The value is negated by changing the sign bit

value.
Sign-extend (Value) A sign-extended 32-bit value has bits 63..31 of

equal value

Appendix D COP1 (FPU) Instruction Set Details

D-3

D.3 Instruction Descriptions
Descriptions of FPU Instructions follow.

Appendix D COP1 (FPU) Instruction Set Details

D-4

ABS.fmt ABS.fmtFloating Point Absolute Value

COP1
010001

ABS
000101fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I
Format: ABS.S fd, fs

ABS.D fd, fs

Purpose: To compute the absolute value of an FP value.

Description: fd ← absolute (fs)

The absolute value of the value in FPR fs is placed in FPR fd. The operand and result are
values in format fmt.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The field fs and fd must specify FPRs valid for operands of type fmt; see Floating-Point
Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, fmt, AbsoluteValue (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Unimplemented Operation
 Invalid Operation

Appendix D COP1 (FPU) Instruction Set Details

D-5

ADD.fmt ADD.fmtFloating Point Add

COP1
010001

ADD
000000ft fs fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I
Format: ADD.S fd, fs, ft

ADD.D fd, fs, ft

Purpose: To add FP values.

Description: fd ← fs + ft

The value in FPR ft is added to the value in FPR fs. The result is calculated to infinite
precision, rounded according to the current rounding mode in FCR31, and placed into FPR
fd. The operands and result are values in format fmt.

Restrictions:

The field fs, ft and fd must specify FPRs valid for operands of type fmt; see Floating-Point
Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, fmt, ValueFPR (fs, fmt) + ValueFPR (ft, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Unimplemented Operation
 Invalid Operation
 Inexact
 Overflow
 Underflow

Appendix D COP1 (FPU) Instruction Set Details

D-6

BC1F BC1FBranch on FP False

COP1
010001 offset

 31 26 25 21 20 16 15 0

 6 5 5 16

BC1
01000

BC1F
00000

MIPS I
Format: BC1F offset

Purpose: To test an FP condition code and do a PC-relative conditional branch.

Description: if (C = 0) then branch where C is FCR3123

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (notnotnotnot the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the result of the last floating point compare is false, branch to the effective target
address after the instruction in the delay slot is executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Operation:
I: condition ← (FCR3123 = 0)

target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target

endif

Exceptions:

Coprocessor Unusable
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix D COP1 (FPU) Instruction Set Details

D-7

BC1T BC1TBranch on FP True

COP1
010001 offset

 31 26 25 21 20 16 15 0

 6 5 5 16

BC1
01000

BC1T
00001

MIPS I
Format: BC1T offset

Purpose: To test an FP condition code and do a PC-relative conditional branch.

Description: if (C = 1) then branch where C is FCR3123.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not not not not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the result of the last floating point compare is true, branch to the effective target
address after the instruction in the delay slot is executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Operation:
I: condition ← (FCR3123 = 1)

target ← (offset15)GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target

endif

Exceptions:

Coprocessor Unusable
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Appendix D COP1 (FPU) Instruction Set Details

D-8

C.cond.fmt C.cond.fmtFloating Point Compare

COP1
010001 ft condfs FC

11

 31 26 25 21 20 16 15 11 10 6 5 4 3 0

 6 5 5 5 5 2 4

fmt 0
00000

MIPS I
Format: C.cond.S fs, ft

C.cond.D fs, ft

Purpose: To compare FP values and record the Boolean result in a condition code.

Description: C ← fs compare_cond ft

The value in FPR fs is compared to the value in FPR ft; the values are in format fmt. The
comparison is exact and neither overflows nor underflows. If the comparison specified by
cond 2..1 is true for the operand values, then the result is true, otherwise it is false. If no
exception is taken, the result is written into condition code C; true is 1 and false is 0.

 If cond3 is set and at least one of the values is a NaN, an Invalid Operation condition is
raised; the result depends on the FP exception model currently active.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written and an Invalid Operation exception is taken immediately.
Otherwise, the Boolean result is written into condition code C

There are four mutually exclusive ordering relations for comparing floating-point values;
one relation is always true and the others are false. The familiar relations are greater
than, less than, and equal. In addition, the IEEE floating-point standard defines the
relation unordered which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0
equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such
as “less than or equal”, “equal”, “not less than”, or “unordered or equal”. Compare
distinguishes sixteen comparison predicates. The Boolean result of the instruction is
obtained by substituting the Boolean value of each ordering relation for the two FP values
into equation. If the equal relation is true, for example, then all four example predicates
above would yield a true result. If the unordered relation is true then only the final
predicate, “unordered or equal” would yield a true result.

Logical negation of a compare result allows eight distinct comparisons to test for sixteen
predicates as shown in Table D-1. Each mnemonic tests for both a predicate and its logical
negation. For each mnemonic, compare tests the truth of the first predicate. When the
first predicate is true, the result is true as shown in the “if predicate is true” column (note
that the False predicate is never true and False/True do not follow the normal pattern).
When the first predicate is true, the second predicate must be false, and vice versa. The
truth of the second predicate is the logical negation of the instruction result. After a
compare instruction, test for the truth of the first predicate with the Branch on FP True
(BC1T) instruction and the truth of the second with Branch on FP False (BC1F).

Appendix D COP1 (FPU) Instruction Set Details

D-9

Table D-1. FPU Comparisons Without Special Operand Exceptions

Instr Comparison Predicate Comparison
CC Result Instr

relation
values

cond
fieldcond

Mne-
monic

name of predicate and logically negated
predicate (abbreviation) > < = ?

If
pred-
icate
is
true

Inv
Op
excp
if Q
NaN

3 2..0

False F F F FF True (T)
[this predicate is always False, it
never has a True result] T T T T F 0

Unordered F F F T TUN
Ordered (OR) T T T F F

1

Equal F F T F TEQ Not Equal (NEQ) T T F T F 2

Unordered or Equal F F T T TUEQ Ordered or Greater than or Less than (OGL) T T F F F 3

Ordered or Less Than F T F F TOLT
Unordered or Greater than or Equal (UGE) T F T T F

4

Unordered or Less Than F T F T TULT Ordered or Greater than or Equal (OGE) T F T F F 5

Ordered or Less than or Equal F T T F TOLE
Unordered or Greater Than (UGT) T F F T F

6

Unordered or Less than or Equal F T T T TULE Ordered or Greater Than (OGT) T F F F F

No 0

7

key: “?” = unordered, “>” = greater than, “<” = less than, “=” is equal, “T” = True, “F” = False

Appendix D COP1 (FPU) Instruction Set Details

D-10

There is another set of eight compare operations, distinguished by a cond3 value of 1,
testing the same sixteen conditions. For these additional comparisons, if at least one of the
operands is a NaN, including Quiet NaN, then an Invalid Operation condition is raised. If
the Invalid Operation condition is enabled in the FCR31, then an Invalid Operation
exception occurs.

Table D-2 FPU Comparisons With Special Operand Exceptions for QNaNs

Instr Comparison Predicate Comparison
CC Result Instr

relation
values

cond
fieldcond

Mne-
monic

name of predicate and logically negated
predicate (abbreviation) > < = ?

If
pred-
icate
is
true

Inv
Op
excp
if Q
NaN

3 2..0

Signaling False F F F FSF Signaling True (ST)
[this predicate
always False] T T T T F 0

Not Greater than or Less than or Equal F F F T TNGLE
Greater than or Less than or Equal (GLE) T T T F F

1

Signaling Equal F F T F TSEQ Signaling Not Equal (SNE) T T F T F 2

Not Greater than or Less than F F T T TNGL Greater than or Less than (GL) T T F F F 3

Less Than F T F F TLT
Not Less Than (NLT) T F T T F

4

Not Greater than or Equal F T F T TNGE Greater than or Equal (GE) T F T F F 5

Less than or Equal F T T F TLE
Not Less than or Equal (NLE) T F F T F

6

Not Greater Than F T T T TNGT Greater Than (GT) T F F F F

Yes 1

7

key: “?” = unordered, “>” = greater than, “<” = less than, “=” is equal, “T” = True, “F” = False

Restrictions:

The field fs and ft must specify FPRs valid for operands of type fmt; see Floating-Point
Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
if NaN (Value FPR (fs, fmt)) or NaN (ValueFPR (ft, fmt)) then

less ← false
equal ← false
unordered ← true
if t then

SignalException (InvalidOperation)
endif

else
less ← ValueFPR (fs, fmt) < ValueFPR (ft, fmt)
equal ← ValueFPR (fs, fmt) = ValueFPR (ft, fmt)
unordered ← false

endif
condition ← (cond2 and less) or (cond1 and equal) or (cond0 and unordered)
C ← condition

Appendix D COP1 (FPU) Instruction Set Details

D-11

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Unimplemented Operation
 Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of
Signaling NaN, will raise the Invalid Operation condition. The comparisons that raise the
Invalid Operation condition for Quiet NaNs in addition to SNaNs, permit a simpler
programming model if NaNs are errors. Using these compares, programs do not need
explicit code to check for QNaNs causing the unordered relation. Instead, they take an
exception and allow the exception handling system to deal with the error when it occurs.
For example, consider a comparison in which we want to know if two numbers are equal,
but for which unordered would be an error.

comparisons using explicit tests for QNaN
c.eq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
c.un.d $f2,$f4 # it is not equal, but might be unordered
bc1t ERROR# unordered goes off to an error handler

not-equal-case code here
...

equal-case code here
L2:
--
comparison using comparisons that signal QNaN

c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

it is not unordered here...
not-equal-case code here

...
#equal-case code here
L2:

Appendix D COP1 (FPU) Instruction Set Details

D-12

CEIL.L.fmt CEIL.L.fmtFloating-Point Ceiling Convert to Long Fixed-Point

COP1
010001

CEIL.L
001010fs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt fd0
00000

MIPS III
Format: CEIL.L.S fd, fs

CEIL.L.D fd, fs

Purpose: To convert an FP value to 64-bit fixed-point, rounding up.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt, is converted to a value in 64-bit long fixed-point format
rounding toward +∞ (rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to
263 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263 –1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed-point; see
Floating-Point Registers on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow

Appendix D COP1 (FPU) Instruction Set Details

D-13

CEIL.W.fmt CEIL.W.fmtFloating-Point Ceiling Convert to Word Fixed-Point

COP1
010001

CEIL.W
001110fs

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt fd0
00000

MIPS II
Format: CEIL.W.S fd, fs

CEIL.W.D fd, fs

Purpose: To convert an FP value to 32-bit fixed-point, rounding up.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point
format rounding toward +∞ (rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to
231 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231 –1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point;
see Floating-Point Registers on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow

Appendix D COP1 (FPU) Instruction Set Details

D-14

CFC1 CFC1Move Control Word from Floating Point

COP1
010001

0
000 0000 0000rt fsCFC1

00010

 31 26 25 21 20 16 15 11 10 0

 6 5 5 5 11

MIPS I
Format: CFC1 rt, fs

Purpose: To copy a word from an FPU control register to a GPR.

Description: rt ← FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt, sign-
extending it if the GPR is 64 bits.

Restrictions:

There are only a couple control registers defined for the floating point unit. The result is
not defined if fs specifies a register that does not exist.

Operation:
GPR[rt] ← sign_extend (FCR[fs])

Exceptions:

Coprocessor Unusable

Appendix D COP1 (FPU) Instruction Set Details

D-15

CTC1 CTC1Move Control Word to Floating Point

COP1
010001

0
000 0000 0000rt fsCTC1

00110

 31 26 25 21 20 16 15 11 10 0

 6 5 5 5 11

MIPS I
Format: CTC1 rt, fs

Purpose: To copy a word from a GPR to an FPU control register.

Description: FP_Control[fs] ← rt

Copy the low word from GPR rt into FP (coprocessor 1) control register fs.

Writing to control register 31, the Floating-Point Control and Status Register or FCR31,
causes the appropriate exception if any cause bit and its corresponding enable bit are both
set. The register will be written before the exception occurs.

Restrictions:

There are only a couple control registers defined for the floating point unit. The result is
not defined if fs specifies a register that does not exist.

Operation:
temp ← GPR[rt]31..0

FCR[fs] ← temp

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow
 Underflow
 Division by Zero

Appendix D COP1 (FPU) Instruction Set Details

D-16

CVT.D.fmt CVT.D.fmtFloating-Point Convert to Double Foating Point

COP1
010001

CVT.D
100001fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I, III
Format: CVT.D.S fd, fs

CVT.D.W fd, fs

CVT.D.L fd, fs

Purpose: To convert an FP or fixed-point value to double FP.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt is converted to a value in double floating-point format
rounded according to the current rounding mode in FCR31. The result is placed in FPR fd.

If fmt is S or W, then the operation is always exact.

Restrictions:

The field fs and fd must specify valid FPRs; fs for type fmt and fd for double floating point;
see Floating-Point Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, D, ConvertFmt (ValueFPR (fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact

Note:
Overflow and Underflow exceptions never occur because double precision data format can
represent any value in other data types.

Appendix D COP1 (FPU) Instruction Set Details

D-17

CVT.L.fmt CVT.L.fmtFloating-Point Convert to Long Fixed-Point

COP1
010001

CVT.L
100101fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS III
Format: CVT.L.S fd, fs

CVT.L.D fd, fs

Purpose: To convert an FP value to a 64-bit fixed-point.

Description: fd ← convert_and_round (fs)

Convert the value in format fmt in FPR fs to long fixed-point format, round according to
the current rounding mode in FCR31, and place the result in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to
263 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263 –1, is written to fd.

Restrictions:

The field fs and fd must specify valid FPRs; fs for type fmt and fd for long floating point;
see Floating-Point Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow

Appendix D COP1 (FPU) Instruction Set Details

D-18

CVT.S.fmt CVT.S.fmtFloating-Point Convert to Single Floating-Point

COP1
010001

CVT.S
100000fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I, III
Format: CVT.S.D fd, fs

CVT.S.W fd, fs

CVT.S.L fd, fs

Purpose: To convert an FP or fixed-point value to single FP.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt is converted to a value in single floating-point format
rounded according to the current rounding mode in FCR31. The result is placed in FPR fd.

Restrictions:

The field fs and fd must specify valid FPRs; fs for type fmt and fd for single floating point;
see Floating-Point Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, S, ConvertFmt (ValueFPR (fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow
 Underflow

Appendix D COP1 (FPU) Instruction Set Details

D-19

CVT.W.fmt CVT.W.fmtFloating-Point Convert to Word Fixed-Point

COP1
010001

CVT.W
100100fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I
Format: CVT.W.S fd, fs

CVT.W.D fd, fs

Purpose: To convert an FP value to a 32-bit fixed-point.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt is converted to a value in 32-bit word fixed-point format
rounded according to the current rounding mode in FCR31. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to
231 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231 –1, is written to fd.

Restrictions:

The field fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; see
Floating-Point Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow

Appendix D COP1 (FPU) Instruction Set Details

D-20

DIV.fmt DIV.fmtFloating Point Divide

COP1
010001

DIV
000011ft fs fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I
Format: DIV.S fd, fs, ft

DIV.D fd, fs, ft

Purpose: To divide FP values.

Description: fd ← fs / ft

The value in FPR fs is divided by the value in FPR ft. The result is calculated to infinite
precision, rounded according to the current rounding mode in FCR31, and placed into FPR
fd. The operands and result are values in format fmt.

Restrictions:

The field fs, ft and fd must specify FPRs valid for operands of type fmt; see Floating-Point
Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, fmt, ValueFPR (fs, fmt) / ValueFPR (ft, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Inexact
 Unimplemented Operation
 Division-by-zero
 Invalid Operation
 Overflow
 Underflow

Appendix D COP1 (FPU) Instruction Set Details

D-21

DMFC1 DMFC1Doubleword Move From Floating-Point

COP1
010001 rt

 31 26 25 21 20 16 15 11 10 0

 6 5 5 5 11

0
000 0000 0000fsDMFC1

00001

MIPS III
Format: DMFC1 rt, fs

Purpose: To copy a doubleword from an FPR to a GPR.

Description: rt ← fs

The doubleword contents of FPR fs are placed into GPR rt.

If the coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit
register emulation mode in a 64-bit processor), FPR fs is held in an even/odd register pair.
The low word is taken from the even register fs and the high word is from fs+1.

Restrictions:

If fs does not specify an FPR that can contain a doubleword, the result is undefined; see
Floating Point Registers on page 10-2.

Operation:
if SizeFGR() = 64 then /* 64-bit wide FGRs */

data ← FGR[fs]
elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */

data ← FGR[fs+1] || FGR[fs]
else /* undefined for odd 32-bit FGRs */

UndefinedResult()
endif
GPR[rt] ← data

Exceptions:

Reserved Instruction
Coprocessor Unusable

Appendix D COP1 (FPU) Instruction Set Details

D-22

DMTC1 DMTC1Doubleword Move To Floating-Point

COP1
010001 rt

 31 26 25 21 20 16 15 11 10 0

 6 5 5 5 11

0
000 0000 0000fsDMTC1

00101

MIPS III
Format: DMTC1 rt, fs

Purpose: To copy a doubleword from a GPR to an FPR.

Description: fs ← rt

The doubleword contents of GPR rt are placed into FPR fs.

If the coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit
register emulation mode in a 64-bit processor), FPR fs is held in an even/odd register pair.
The low word is Placed in the even register fs and the high word is placed in fs+1.

Restrictions:

If fs does not specify an FPR that can contain a doubleword, the result is undefined; see
Floating Point Registers on page 10-2.

Operation:
data ← GPR[rt]
if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[fs] ← data
elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[fs+1] ← data63..32

FGR[fs] ← data31..0

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Exceptions:

Reserved Instruction
Coprocessor Unusable

Appendix D COP1 (FPU) Instruction Set Details

D-23

FLOOR.L.fmt FLOOR.L.fmtFloating-Point Floor Convert to Long
Fixed-Point

COP1
010001

FLOOR.L
001011fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS III
Format: FLOOR.L.S fd, fs

FLOOR.L.D fd, fs

Purpose: To convert an FP value to a 64-bit fixed-point, rounding down.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt, is converted to a value in 64-bit long fixed-point format
rounding toward −∞ (rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to
263 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263 –1, is written to fd.

Restrictions:

The field fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; see
Floating-Point Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow

Appendix D COP1 (FPU) Instruction Set Details

D-24

FLOOR.W.fmt FLOOR.W.fmtFloating-Point Floor Convert to Word
Fixed-Point

COP1
010001

FLOOR.W
001111fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS II
Format: FLOOR.W.S fd, fs

FLOOR.W.D fd, fs

Purpose: To convert an FP value to a 32-bit fixed-point, rounding down.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point
format rounding toward −∞ (rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to
231 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231 –1, is written to fd.

Restrictions:

The field fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; see
Floating-Point Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow

Appendix D COP1 (FPU) Instruction Set Details

D-25

LDC1 LDC1Load Doubleword to Floating-Point

LDC1
110101 offset

 31 26 25 21 20 16 15 0

 6 5 5 16

base ft

MIPS II
Format: LDC1 ft, offset (base)

Purpose: To load a doubleword from memory to an FPR.

Description: ft ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned
effective address are fetched and placed in FPR ft. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit
register emulation mode in a 64-bit processor), FPR ft is held in an even/odd register pair.
The low word is placed in the even register ft and the high word is placed in ft+1.

Restrictions:

If ft does not specify an FPR that can contain a doubleword, the result is undefined; see
Floating-Point Resisters on page 10-2.

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:
vAddr ← sign_extend (offset) + GPR[base]
if vAddr2..0 ≠ 03 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
data ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[ft] ← data
elseif ft0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[ft+1] ← data63..32

FGR[ft] ← data31..0

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Exceptions:

Coprocessor Unusable
TLB Refill
TLB Invalid
Address Error

Appendix D COP1 (FPU) Instruction Set Details

D-26

LWC1 LWC1Load Word to Floating Point

LWC1
110001 offsetftbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: LWC1 ft, offset (base)

Purpose: To load a word from memory to an FPR.

Description: ft ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective
address are fetched and placed into the low word of coprocessor 1 general register ft . The
16-bit signed offset is added to the contents of GPR base to form the effective address.

If coprocessor 1 general registers are 64-bits wide, bits 63..32 of register ft become
undefined. See Floating Point Register on page 10-2.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation: 32-bit Processors
I: /* “mem” is aligned 64-bits from memory. Pick out correct bytes. */

vAddr ← sign_extend (offset) + GPR[base]
if vAddr1..0 ≠ 02 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

I + 1: FGR[ft] ← mem

Operation: 64-bit Processors
/* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
vAddr ← sign_extend (offset) + GPR[base]
if vAddr1..0 ≠ 02 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
bytesel ← vAddr2..0 xor (BigEndianCPU || 02)
if SizeFGR() = 64 then /* 64-bit wide FGRs */
FGR[ft] ← undefined 32 || mem31+8*bytesel..8*bytesel

else /* 32-bit wide FGRs */
FGR[ft] ← mem31+8*bytesel..8*bytesel

endif

Exceptions:

Coprocessor unusable
TLB Refill
TLB Invalid
Address Error

Appendix D COP1 (FPU) Instruction Set Details

D-27

MFC1 MFC1Move Word from Floating Point

COP1
010001

0
000 0000 0000rt fsMFC1

00000

 31 26 25 21 20 16 15 11 10 0

 6 5 5 5 11

MIPS I
Format: MFC1 rt, fs

Purpose: To copy a word from an FPU (COP1) general register to a GPR.

Description: rt ← fs

The low word from FPR fs is placed into the low word of GPR rt. If GPR rt is 64 bits wide,
then the value is sign extended. See Floating Point Resisters on page 10-2.

Restrictions:

None

Operation:
GPR[rt] ← sign_extend (FPR[fs]31..0)

Exceptions:

Coprocessor Unusable

Appendix D COP1 (FPU) Instruction Set Details

D-28

MOV.fmt MOV.fmtFloating Point Move

COP1
010001

MOV
000110fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I
Format: MOV.S fd, fs

MOV.D fd, fs

Purpose: To move an FP value between FPRs.

Description: fd ← fs

The value in FPR fs is placed into FPR fd . The source and destination are values in
format fmt.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The field fs and fd must specify FPRs valid for operands of type fmt; see Floating-Point
Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, fmt, ValueFPR (fs, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Unimplemented Operation

Appendix D COP1 (FPU) Instruction Set Details

D-29

MTC1 MTC1Move Word to Floating Point

COP1
010001

0
000 0000 0000rt fsMTC1

00100

 31 26 25 21 20 16 15 11 10 0

 6 5 5 5 11

MIPS I
Format: MTC1 rt, fs

Purpose: To copy a word from a GPR to an FPU (COP1) general register.

Description: fs ← rt

The low word in GPR rt is placed into the low word of floating-point (coprocessor 1)
general register fs. If coprocessor 1 general registers are 64-bits wide, bits 63..32 of
register fs become undefined. See Floating-Point Registers on page 10-2.

Operation:
data ← GPR[rt]31..0

if SizeFGR() = 64 then /* 64-bit wide FGRs */
FGR[fs] ← undefined32 || data

else /* 32-bit wide FGRs */
FGR[fs] ← data

endif

Exceptions:

Coprocessor Unusable

Appendix D COP1 (FPU) Instruction Set Details

D-30

MUL.fmt MUL.fmtFloating Point Multiply

COP1
010001

MUL
000010ft fs fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I
Format: MUL.S fd, fs, ft

MUL.D fd, fs, ft

Purpose: To multiply FP values.

Description: fd ← fs × ft

The value in FPR fs is multiplied by the value in FPR ft. The result is calculated to
infinite precision, rounded according to the current rounding mode in FCR31, and placed
into FPR fd. The operands and result are value in format fmt.

Restrictions:

The field fs, ft and fd must specify FPRs valid for operands of type fmt; see Floating-Point
Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, fmt, ValueFPR (fs, fmt) * ValueFPR (ft, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Inexact
 Unimplemented Operation
 Invalid Operation
 Overflow
 Underflow

Appendix D COP1 (FPU) Instruction Set Details

D-31

NEG.fmt NEG.fmtFloating Point Negate

COP1
010001

NEG
000111fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I
Format: NEG.S fd, fs

NEG.D fd, fs

Purpose: To negate a floating-point value.

Description: fd ← -(fs)

The value in FPR fs is negated and placed into FPR fd. The value is negated by changing
the sign bit value. The operand and result are values in format fmt.

This operation is arthmetic; a NaN operand signals invalid operation.

Restrictions:

The field fs and fd must specify FPRs valid for operands of type fmt; see Floating-Point
Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, fmt, Negate (ValueFPR (fs, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Unimplemented Operation
 Invalid Operation

Appendix D COP1 (FPU) Instruction Set Details

D-32

ROUND.L.fmt ROUND.L.fmtFloating Point Round to Long Fixed-
Point

COP1
010001

ROUND.L
001000fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS III
Format: ROUND.L.S fd, fs

ROUND.L.D fd, fs

Purpose: To convert an FP value to 64-bit fixed-point, round to nearest.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt, is converted to a value in 64-bit long fixed-point format
rounding to nearest/even (rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to
263 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263 –1, is written to fd.

Restrictions:

The field fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; see
Floating-Point Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt,L)

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Inexact
 Unimplemented Operation
 Overflow
 Invalid Operation

Appendix D COP1 (FPU) Instruction Set Details

D-33

ROUND.W.fmt ROUND.W.fmtFloating Point Round to Word Fixed-
Point

COP1
010001

ROUND.W
001100fs0

00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS II
Format: ROUND.W.S fd, fs

ROUND.W.D fd, fs

Purpose: To convert an FP value to 32-bit fixed-point, round to nearest.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point
format rounding to nearest/even (rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to
231 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231 –1, is written to fd.

Restrictions:

The field fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; see
Floating-Point Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt,W)

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Inexact
 Unimplemented Operation
 Overflow
 Invalid Operation

Appendix D COP1 (FPU) Instruction Set Details

D-34

SDC1 SDC1Store Doubleword to Floating-Point

SDC1
111101 offset

 31 26 25 21 20 16 15 0

 6 5 5 16

base ft

MIPS II
Format: SDC1 ft, offset (base)

Purpose: To store a doubleword from an FPR to memory.

Description: memory[base+offset] ← ft

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to
form the effective address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit
register emulation mode in a 64-bit processor), FPR ft is held in an even/odd register pair.
The low word is taken from the even register ft and the high word is from ft+1.

Restrictions:

If ft does not specify an FPR that can contain a doubleword, the result is undefined; see
Floating-Point Resisters on page 10-2.

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:
vAddr ← sign_extend (offset) + GPR[base]
if vAddr2..0 ≠ 03 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
if SizeFGR() = 64 then /* 64-bit wide FGRs */

data ← FGR[ft]
elseif ft0 = 0 then /* valid specifier, 32-bit wide FGRs */

data ← FGR[ft+1] || FGR[ft]
else /* undefined for odd 32-bit FGRs */

UndefinedResult()
endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable
TLB Refill
TLB Invalid
TLB Modified
Address Error

Appendix D COP1 (FPU) Instruction Set Details

D-35

SQRT.fmt SQRT.fmtFloating Point Square Root

COP1
010001

SQRT
000100

0
00000 fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt fs

MIPS II
Format: SQRT.S fd, fs

SQRT.D fd, fs

Purpose: To compute the square root of an FP value.

Description: fd ← SQRT (fs)

The square root of the value in FPR fs is calculated to infinite precision, rounded
according to the current rounding mode in FCR31, and placed into FPR fd. The operand
and result are values in format fmt.

If the value in FPR fs corresponds to −0, the result will be −0.

Restrictions:

If the value in FPR fs is less than 0, an Invalid Operation condition is raised.

The field fs and fd must specify FPRs valid for operands of type fmt; see Floating-Point
Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, fmt, SquareRoot (FPR (fs, fmt)))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Inexact
 Unimplemented Operation
 Invalid Operation

Appendix D COP1 (FPU) Instruction Set Details

D-36

SUB.fmt SUB.fmtFloating Point Subtract

COP1
010001

SUB
000001

ft fs fd

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

fmt

MIPS I
Format: SUB.S fd, fs, ft

SUB.S fd, fs, ft

Purpose: To subtract FP values.

Description: fd ← fs - ft

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to
infinite precision, rounded according to the current rounding mode in FCR31, and placed
into FPR fd . The operands and result are value in format fmt.

Restrictions:

The field fs, ft, and fd must specify FPRs valid for operands of type fmt; see Floating-Point
Resisters on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, fmt, ValueFPR (fs, fmt) – ValueFPR (ft, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Inexact
 Unimplemented Operation
 Invalid Operation
 Overflow
 Underflow

Appendix D COP1 (FPU) Instruction Set Details

D-37

SWC1 SWC1Store Word from Floating Point

SWC1
111001 offsetftbase

 31 26 25 21 20 16 15 0

 6 5 5 16

MIPS I
Format: SWC1 ft, offset (base)

Purpose: To store a word from an FPR to memory.

Description: memory[base+offset] ← ft

The low 32-bit word from FPR ft is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to
form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation: 32-bit Processors
vAddr ← sign_extend (offset) + GPR[base]
if vAddr1..0 ≠ 02 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
data ← FGR[ft]
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Operation: 64-bit Processors
vAddr ← sign_extend (offset) + GPR[base]
if vAddr1..0 ≠ 02 then SignalException (AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
bytesel ← vAddr2..0 xor (BigEndianCPU || 02)
/* the bytes of the word are moved into the correct byte lanes */
if SizeFGR() = 64 then /* 64-bit wide FGRs */
 data ← 032-8*bytesel || FGR[ft]31..0 || 08*bytesel /* top or bottom wd of 64-bit data */
else /* 32-bit wide FGRs */
 data ← 032-8*bytesel || FGR[ft] || 08*bytesel /* top or bottom wd of 64-bit data */
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable
TLB Refill
TLB Invalid
TLB Modified
Address Error

Appendix D COP1 (FPU) Instruction Set Details

D-38

TRUNC.L.fmt TRUNC.L.fmtFloating Point Truncate to Long Fixed-
Point

COP1
010001 fsfmt

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

0
00000 fd TRUNC.L

001001

MIPS III
Format: TRUNC.L.S fd, fs

TRUNC.L.D fd, fs

Purpose: To convert an FP value to 64-bit fixed-point, rounding toward zero.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt, is converted to a value in 64-bit long fixed-point format
rounding toward zero (rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to
263 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263 –1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed-point; see
Floating-Point Registers on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L)

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow

Appendix D COP1 (FPU) Instruction Set Details

D-39

TRUNC.W.fmt TRUNC.W.fmtFloating Point Truncate to Word Fixed-
Point

COP1
010001 fsft

 31 26 25 21 20 16 15 11 10 6 5 0

 6 5 5 5 5 6

0
00000 fd TRUNC.W

001101

MIPS II
Format: TRUNC.W.S fd, fs

TRUNC.W.D fd, fs

Purpose: To convert an FP value to 32-bit fixed-point, rounding toward zero.

Description: fd ← convert_and_round (fs)

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point
format rounding toward zero (rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to
231 -1, the result cannot be represented correctly and an IEEE Invalid Operation condition
exists.

The Invalid Operation flag is set in the FCR31. If the Invalid Operation enable bit is set in
the FCR31, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231 –1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point;
see Floating-Point Registers on page 10-2. If they are not valid, the result is undefined.

Operation:
StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W)

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
 Invalid Operation
 Unimplemented Operation
 Inexact
 Overflow

Appendix D COP1 (FPU) Instruction Set Details

D-40

D.4 COP1 Instruction Encoding
31 26 0

OpCode

OpCode bits 28..26 Instructions encoded by OpCode field (COP1, LWC1, SWC1, LDC1, SDC1)

bits 0 1 2 3 4 5 6 7
31..29 000 001 010 011 100 101 110 111

0 000 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 COP1 δ * * BEQL BNEL BLEZL BGTZL

3 011 DADDI DADDIU LDL LDR MMI * LQ SQ

4 100 LB LH LWL LW LBU LHU LWR LWU

5 101 SB SH SWL SW SDL SDR SWR CACHE

6 110 η LWC1 η PREF η LDC1 η LD

7 111 η SWC1 η * η SDC1 η SD

31 26 25 21 0
OpCode =

 COP1 rs

rs bits 23..21 Instructions encoded by rs field when OpCode field = COP1

bits 0 1 2 3 4 5 6 7
25..24 000 001 010 011 100 101 110 111

0 00 MFC1 DMFC1 CFC1 * MTC1 DMTC1 CTC1 *

1 01 BC1 δ * * * * * * *

2 10 S δ D δ ϕ ϕ W δ L δ ϕ ϕ

3 11 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

31 26 25 21 20 16 0
OpCode =

 COP1 rs = BC1 rt

rt bits 18..16 Instructions encoded by rt field
when OpCode field = COP1 & rs field = BC1

bits 0 1 2 3 4 5 6 7
20..19 000 001 010 011 100 101 110 111

0 00 BC1F BC1T * * * * * *

1 01 * * * * * * * *

2 10 * * * * * * * *

3 11 * * * * * * * *

Appendix D COP1 (FPU) Instruction Set Details

D-41

31 26 25 21 5 0
OpCode =

 COP1 rs = S, D function

function bits 2..0 Instructions encoded by function field
when OpCode field = COP1 & rs field = S, D

bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L TRUNC.L CEIL.L FLOOR.L ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

3 011 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

4 100 CVT.S CVT.D ϕ ϕ CVT.W CVT.L ϕ ϕ

5 101 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

6 110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

7 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

31 26 25 21 5 0
OpCode =

 COP1 rs = W, L function

function bits 2..0 Instructions encoded by function field
when OpCode field = COP1 & rs field = W, L

bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111

0 000 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

1 001 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

2 010 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

3 011 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

4 100 CVT.S CVT.D ϕ ϕ ϕ ϕ ϕ ϕ

5 101 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

6 110 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

7 111 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

* This OpCode is reserved for future use. An attempt to execute it causes a
Reserved Instruction exception but this is not guaranteed.

ϕ This OpCode is reserved for future use. An attempt to execute it produces
an undefined result. The result may be an Unimplemented Operation
exception.

δ This OpCode indicates an instruction class. The instruction word must be
further decoded by examining additional tables that show the values for
another instruction field.

η This OpCode is reserved for one of the following instructions which are
currently not supported: DMULT, DMULTU, DDIV, DDIVU, LL, LLD, SC,
SCD, LWC2, SWC2. An attempt to execute it causes a Reserved Instruction
exception.

Appendix D COP1 (FPU) Instruction Set Details

D-42

